
(0,25)^(x^2-4)=2^(x^2-1)


Ответы на вопрос




To solve the equation (0.25)^(x^2-4) = 2^(x^2-1), we can start by taking the logarithm of both sides of the equation.
Using the property log(a^b) = b * log(a), we can rewrite the equation as:
(x^2-4) * log(0.25) = (x^2-1) * log(2)
Now, let's solve for x by isolating the terms involving x.
(x^2-4) * log(0.25) - (x^2-1) * log(2) = 0
Simplifying the equation further:
(x^2-4) * log(0.25) = (x^2-1) * log(2)
Distributing log(0.25) and log(2):
x^2 * log(0.25) - 4 * log(0.25) = x^2 * log(2) - log(2)
Rearranging the equation:
x^2 * (log(0.25) - log(2)) = -log(2) + 4 * log(0.25)
Now, we can substitute the values of log(0.25) and log(2):
x^2 * (log(0.25) - log(2)) = -log(2) + 4 * log(0.25)
x^2 * (-2 * log(2)) = -log(2) + 4 * (2 * log(2))
Simplifying further:
-2 * x^2 * log(2) = -log(2) + 8 * log(2)
Dividing both sides by -2 * log(2):
x^2 = (-log(2) + 8 * log(2)) / (-2 * log(2))
Simplifying the right side:
x^2 = (8 * log(2) - log(2)) / (2 * log(2))
x^2 = 7 * log(2) / (2 * log(2))
Canceling out the log(2) terms:
x^2 = 7 / 2
Taking the square root of both sides:
x = ±√(7/2)
Therefore, the solutions to the equation (0.25)^(x^2-4) = 2^(x^2-1) are x = √(7/2) and x = -√(7/2).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili