
2sin3xcos3x=0 Cos^2x-sin^2x=1


Ответы на вопрос




Let's start by simplifying the first equation:
2sin3xcos3x = 0
Since the product of two factors is equal to zero only if one or both factors are equal to zero, we have two possible solutions:
sin3x = 0 or cos3x = 0
Let's solve each equation separately:
- sin3x = 0
Using the trigonometric identity sin3x = 3sinx - 4sin^3x, we can rewrite the equation as:
3sinx - 4sin^3x = 0
Factor out sinx:
sinx(3 - 4sin^2x) = 0
So either sinx = 0 or 3 - 4sin^2x = 0.
If sinx = 0, then x = kπ where k is an integer.
If 3 - 4sin^2x = 0, then sin^2x = 3/4, which gives sinx = ±√3/2.
The solutions to sin3x = 0 are then:
x = kπ or x = (2n+1)π/6, where k and n are integers.
- cos3x = 0
Using the trigonometric identity cos3x = 4cos^3x - 3cosx, we can rewrite the equation as:
4cos^3x - 3cosx = 0
Factor out cosx:
cosx(4cos^2x - 3) = 0
So either cosx = 0 or 4cos^2x - 3 = 0.
If cosx = 0, then x = (2k+1)π/2 where k is an integer.
If 4cos^2x - 3 = 0, then cos^2x = 3/4, which gives cosx = ±√3/2.
The solutions to cos3x = 0 are then:
x = (2k+1)π/6 or x = (2nπ ± π/3)/3, where k and n are integers.
Now, let's move on to the second equation:
cos^2x - sin^2x = 1
Using the trigonometric identity cos^2x - sin^2x = cos2x, we can rewrite the equation as:
cos2x = 1
This equation has a single solution: 2x = 2kπ, where k is an integer. Therefore, x = kπ.
To summarize, the solutions to the system of equations 2sin3xcos3x=0 and cos^2x-sin^2x=1 are:
- x = kπ or x = (2n+1)π/6, where k and n are integers, for the equation 2sin3xcos3x=0.
- x = (2k+1)π/2 or x = (2nπ ± π/3)/3, where k and n are integers, for the equation cos3x=0.
- x = kπ for the equation cos^2x-sin^2x=1.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili