Вопрос задан 24.03.2021 в 13:53. Предмет Алгебра. Спрашивает Курганский Егор.

Улитка проползла по вертикальной стене 6м вверх и пустилась на 5 м вниз, затратив на весь путь 14ч.

Её скорость при подъёме была на 2 м/ч меньше, чем при спуске. Сколько времени улитка ползла по стене вверх и сколько вниз?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Хачиров Ислам.

х-скорость вверх, х+2 -скорость вниз, находим время затраченное вниз 6/x,

время вниз 5/х+2.Все время в пути 14, получим уравнение.

6/х+5/х+2=14. Решаем уравнение получаем х=0,5 м/ч.Находим время вверх

6:0,5=12 часов, время вниз 5:2,5=2 часа

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим скорость улитки при подъеме как v1, а при спуске как v2. Тогда мы знаем, что её скорость при подъёме была на 2 м/ч меньше, чем при спуске:

v1 = v2 - 2

Мы также знаем, что улитка проползла по вертикальной стене 6м вверх и 5м вниз, то есть всего она прошла 6 + 5 = 11 метров. Мы можем использовать формулу:

время = расстояние / скорость

для того, чтобы найти время, которое улитка потратила на подъем и спуск. Пусть t1 обозначает время, которое улитка потратила на подъем, а t2 - время, которое улитка потратила на спуск.

Тогда мы можем записать два уравнения на основе этих данных:

t1 * v1 + t2 * v2 = 11 (общее расстояние, которое улитка проползла) t1 + t2 = 14 (общее время, которое улитка потратила)

Мы можем решить эту систему уравнений, чтобы найти t1 и t2. Для этого мы сначала выразим t2 через t1 из второго уравнения:

t2 = 14 - t1

Затем мы подставим это выражение для t2 в первое уравнение:

t1 * v1 + (14 - t1) * v2 = 11

Теперь мы можем решить это уравнение относительно t1. Для этого мы сначала выразим v2 через v1, используя уравнение v1 = v2 - 2:

v2 = v1 + 2

Затем мы подставим это выражение для v2 в уравнение выше и решим относительно t1:

t1 * v1 + (14 - t1) * (v1 + 2) = 11

t1 * v1 + 28 - 2t1 + v1 * t1 + 2 * v1 - 28 = 11

2 * t1 * v1 = 11 - 2 * v1

t1 = (11 - 2 * v1) / (2 * v1)

Теперь мы можем подставить это значение для t1 в уравнение t2 = 14 - t1, чтобы найти t2:

t2 = 14 - (11 - 2 * v1) / (2 * v1)

Теперь мы можем найти значения t1 и t2, а затем использовать формулу время = расстояние / скорость, чтобы найти время, которое улитка потратила на подъем и спуск:

t1 = (11 - 2 * v1) / (2 * v1) ≈

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос