
Lim x->0 V7+x-V7-x/5x


Ответы на вопрос

lim ( V7+x-V7-x)(V7+x + V7-x) /5x*(V7+x + V7-x)=lim 7+x-(7-x) /5x*(V7+x +V7-x)=lim 2x/5x*(V7+x+V7-x)=lim2/5*(V7+x+V7-x)=2/5*2V7=1/5V7



To evaluate the limit as x approaches 0 of the expression (V(7 + x) - V(7 - x))/(5x), where V denotes the square root function, we can simplify it using algebraic manipulations.
Let's start by expressing the square roots as exponents:
(V(7 + x) - V(7 - x))/(5x) = ((7 + x)^(1/2) - (7 - x)^(1/2))/(5x)
To eliminate the square roots, we can multiply the numerator and denominator by the conjugate of the numerator:
((7 + x)^(1/2) - (7 - x)^(1/2))/(5x) * ((7 + x)^(1/2) + (7 - x)^(1/2))/((7 + x)^(1/2) + (7 - x)^(1/2))
Expanding the numerator and denominator:
= [(7 + x) - (7 - x)] / [5x * ((7 + x)^(1/2) + (7 - x)^(1/2))]
= [x + x] / [5x * ((7 + x)^(1/2) + (7 - x)^(1/2))]
= [2x] / [5x * ((7 + x)^(1/2) + (7 - x)^(1/2))]
The x term cancels out:
= 2 / [5 * ((7 + x)^(1/2) + (7 - x)^(1/2))]
Now, let's evaluate the limit as x approaches 0:
lim(x->0) 2 / [5 * ((7 + x)^(1/2) + (7 - x)^(1/2))]
Plugging in x = 0:
= 2 / [5 * ((7 + 0)^(1/2) + (7 - 0)^(1/2))]
= 2 / [5 * (7^(1/2) + 7^(1/2))]
= 2 / [5 * (2 * 7^(1/2))]
= 2 / [10 * 7^(1/2)]
Simplifying:
= 1 / (5 * 7^(1/2))
= 1 / (5 * √7)
Therefore, the limit as x approaches 0 of (V(7 + x) - V(7 - x))/(5x) is 1 / (5 * √7).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili