
Вопрос задан 21.03.2021 в 14:46.
Предмет Алгебра.
Спрашивает Урманчеева Азиля.
Найти первообразную для функции f (x) =1/5х


Ответы на вопрос

Отвечает Лагойко Даша.
F(x) = 1 / 5 * ln|x| + c



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Чтобы найти первообразную функцию для f(x) = 1/5x, нужно найти функцию F(x), производная которой равна f(x).
Мы знаем, что производная от x^n равна n*x^(n-1), поэтому мы можем применить это правило, чтобы найти первообразную для данной функции:
F(x) = ∫f(x) dx = ∫(1/5)x dx
Мы можем вынести константу 1/5 за знак интеграла:
F(x) = (1/5) ∫ x dx
Затем мы можем проинтегрировать x по формуле ∫x dx = 1/2*x^2:
F(x) = (1/5) * (1/2) * x^2 + C
где C - произвольная постоянная интегрирования.
Таким образом, первообразная функция для f(x) = 1/5x будет F(x) = (1/10) x^2 + C.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili