
Вопрос задан 20.03.2021 в 13:05.
Предмет Алгебра.
Спрашивает Седалищев Ньургун.
Найдите значение выражения у(5у+2х)-(х+у)^2 при х= корень из 11 , у= корень из 3


Ответы на вопрос

Отвечает Грачёва Оля.
У(5у+2х)-(х+у)²=5у²+2ху-х²-2ху-у²=4у²-х²
4*(√3)²-(√11)²=4*3-11=12-11=1
4*(√3)²-(√11)²=4*3-11=12-11=1



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для решения данной задачи, мы должны подставить значения х и у в данное выражение и произвести необходимые вычисления. Давайте по порядку:
Заменяем х на корень из 11:
у(5у + 2х) - (х + у)^2 = у(5у + 2 * √11) - (√11 + √3)^2
Заменяем у на корень из 3:
у(5у + 2х) - (х + у)^2 = √3(5√3 + 2√11) - (√11 + √3)^2
Выполняем вычисления:
у(5у + 2х) - (х + у)^2 = 3√11 + 10√3 - (11 + 2√3 + 2√33)
Упрощаем выражение:
у(5у + 2х) - (х + у)^2 = -8 - √33
Таким образом, значение данного выражения при х = корень из 11, у = корень из 3 равно -8 - √33.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili