
Вопрос задан 16.03.2021 в 17:40.
Предмет Алгебра.
Спрашивает Бескровный Максим.
Коллинеарны ли векторы: А) а{1; -3} и b{-1; 1/3} Б) m{2;4} и n{-2;4}


Ответы на вопрос

Отвечает Капитанов Саша.
В первом да, а во втором - нет



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для проверки коллинеарности векторов, мы должны убедиться, что один вектор является кратным другому. Для этого нам понадобится вычислить отношение координат векторов.
A) Векторы a{1; -3} и b{-1; 1/3}:
Для проверки коллинеарности мы вычислим отношение координат векторов: a₁/b₁ = 1 / -1 = -1 a₂/b₂ = -3 / (1/3) = -9
Отношение координат не одинаково для обоих векторов, поэтому они не являются коллинеарными.
Б) Векторы m{2; 4} и n{-2; 4}:
Вычисляем отношение координат векторов: m₁/n₁ = 2 / -2 = -1 m₂/n₂ = 4 / 4 = 1
Отношение координат одинаково для обоих векторов, поэтому они являются коллинеарными.
Итак, векторы a{1; -3} и b{-1; 1/3} не коллинеарны, в то время как векторы m{2; 4} и n{-2; 4} коллинеарны.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili