
(6у+2)(5-у)=47-(2у-3)(3у-1)


Ответы на вопрос

(6у+2)(5-у)=47-(2у-3)(3у-1)
30у-6у2+10-2у=47-(6у2-2у-9у+3)
-6у2+28у+10=44-6у2+11у
-6у2+28у+10-44+6у2-11у=0
17у-34=0
17у=34
у=2



To solve the given equation, let's simplify both sides step by step:
Starting with the left side of the equation: (6у + 2)(5 - у) = 47
Expanding the left side using the distributive property: 30у - 6у^2 + 10 - 2у = 47
Combining like terms: 30у - 6у^2 - 2у + 10 = 47
Simplifying further: -6у^2 + 28у + 10 = 47
Now let's simplify the right side of the equation: (2у - 3)(3у - 1) = 47
Expanding the right side using the distributive property: 6у^2 - 2у - 9у + 3 = 47
Combining like terms: 6у^2 - 11у + 3 = 47
Moving all terms to one side of the equation: 6у^2 - 11у + 3 - 47 = 0
Simplifying further: 6у^2 - 11у - 44 = 0
Now we have the equation: -6у^2 + 28у + 10 = 6у^2 - 11у - 44
To solve this equation, we can move all terms to one side: -12у^2 + 39у + 54 = 0
However, this quadratic equation cannot be easily factored. We can solve it using the quadratic formula:
у = (-b ± √(b^2 - 4ac)) / (2a)
For the equation -12у^2 + 39у + 54 = 0, the coefficients are: a = -12 b = 39 c = 54
Substituting these values into the quadratic formula: у = (-(39) ± √((39)^2 - 4(-12)(54))) / (2(-12))
Simplifying the formula: у = (-39 ± √(1521 + 2592)) / (-24) у = (-39 ± √4113) / (-24)
Thus, the solutions for the quadratic equation are: у ≈ 3.63 у ≈ -1.05
Please note that these are approximate values rounded to two decimal places.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili