
Вопрос задан 07.03.2021 в 14:54.
Предмет Алгебра.
Спрашивает Бутчик Вася.
Пользуясь треугольником Паскаля , запишите формулу для возведения в седьмую степень : a) (a+b) б)
(a-b)

Ответы на вопрос

Отвечает Жукова Рина.
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
(a+b)⁷=a⁷+7a⁶b+21a⁵b²+35a⁴b³+35a³b⁴+21a²b⁵+7ab⁶+b⁷.
(a-b)⁷=a⁷-7a⁶b+21a⁵b²-35a⁴b³+35a³b⁴-21a²b⁵+7ab⁶-b⁷.
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
(a+b)⁷=a⁷+7a⁶b+21a⁵b²+35a⁴b³+35a³b⁴+21a²b⁵+7ab⁶+b⁷.
(a-b)⁷=a⁷-7a⁶b+21a⁵b²-35a⁴b³+35a³b⁴-21a²b⁵+7ab⁶-b⁷.



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
(a) Для возведения в седьмую степень выражения (a + b) с использованием треугольника Паскаля можно применить следующую формулу:
(a + b)^7 = 1a^7 + 7a^6b + 21a^5b^2 + 35a^4b^3 + 35a^3b^4 + 21a^2b^5 + 7ab^6 + 1b^7
Это следует из раскрытия седьмой степени бинома (a + b) по формуле бинома Ньютона и использования коэффициентов из треугольника Паскаля.
(b) Аналогично, для возведения в седьмую степень выражения (a - b) можно использовать треугольник Паскаля:
(a - b)^7 = 1a^7 - 7a^6b + 21a^5b^2 - 35a^4b^3 + 35a^3b^4 - 21a^2b^5 + 7ab^6 - 1b^7
Здесь также применяется формула бинома Ньютона, но со знаками плюс и минус, а коэффициенты берутся из треугольника Паскаля.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili