
Sin 3x =-1/2 -2cos x=1


Ответы на вопрос





To solve the equation sin(3x) = -1/2 - 2cos(x) = 1, we'll break it down into two separate equations and solve them individually. Let's start with sin(3x) = -1/2:
- Solve sin(3x) = -1/2: To find the values of x that satisfy this equation, we can use the inverse sine function (arcsin or sin^(-1)).
arcsin(-1/2) = -π/6 + 2πk or 7π/6 + 2πk, where k is an integer.
So, we have two cases: Case 1: 3x = -π/6 + 2πk Case 2: 3x = 7π/6 + 2πk
- Solve -2cos(x) = 1: To solve this equation, we'll isolate cos(x) and find its value.
-2cos(x) = 1 cos(x) = -1/2
Using the inverse cosine function (arccos or cos^(-1)), we find the solutions:
arccos(-1/2) = 2π/3 + 2πk or 4π/3 + 2πk, where k is an integer.
Now, we'll combine the solutions from both equations and find the common values for x:
For Case 1: 3x = -π/6 + 2πk For Case 2: 3x = 7π/6 + 2πk
For cos(x) = -1/2: x = 2π/3 + 2πk or x = 4π/3 + 2πk
Now, we need to find the values of x that satisfy both conditions.
For x = 2π/3 + 2πk: 3(2π/3 + 2πk) = -π/6 + 2πk 2π + 6πk = -π/6 + 2πk
Simplifying, we get: 4π + 12πk = -π + 12πk 4π = -π
This equation has no solutions.
For x = 4π/3 + 2πk: 3(4π/3 + 2πk) = -π/6 + 2πk 4π + 12πk = -π/6 + 2πk
Simplifying, we get: 8π + 24πk = -π + 12πk 8π = -π
This equation has no solutions.
In conclusion, there are no values of x that satisfy the equation sin(3x) = -1/2 - 2cos(x) = 1.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili