
1)|x+4|=2x 2)|x-14|=8+2x 3)|x^2-4x|=3x


Ответы на вопрос

1) х+4=2х или -х-4=2х
-х=-4 -3х = 4
х=4 х=-4/3
Проверка:
|4+4|=8 |-4/3+4|=-8/3
|8|=8 Модуль не может равняться отрицательному числу
х=4
2) х-14=8+2х или -х+14=8+2х
-х=22 -3х=-6
х=-22 x = 2
Проверка:
|-22-14|=8-44 |2-14|=8+4
|-36|≠-36 |-12| = 12
x=2
3) x²-4x=3x или -x²+4x=3x
x²-7x=0 x²-x = 0
x₁ = 0; x₂ = 7 x3= 0; x₄ = 1
Проверка:
a) |0-0|=0 c) 0=0
0=0 d) |1-4|=3
b) |49-28|=21 |-3|=3
21=21 3=3
x₁=0; x₂=1; x3 = 7



1. |x+4|> или = 0
х+4=2х
2х-х-4=0
х=4
|x+4|<0
-(х+4)=2х
-х-4=2х
2х+х-4=0
3х=4
х=4/3



Let's solve each equation step by step:
- |x + 4| = 2x
To solve this equation, we need to consider two cases, one where the expression inside the absolute value is positive, and another where it is negative.
Case 1: x + 4 ≥ 0 In this case, the absolute value can be removed, so we have: x + 4 = 2x
Simplifying: 4 = x
Case 2: x + 4 < 0 In this case, the expression inside the absolute value becomes its negation, so we have: -(x + 4) = 2x
Simplifying: -x - 4 = 2x
Rearranging terms: 3x = -4
Dividing both sides by 3: x = -4/3
Therefore, the solutions to the equation |x + 4| = 2x are x = 4 and x = -4/3.
- |x - 14| = 8 + 2x
Again, we consider two cases based on the sign of the expression inside the absolute value.
Case 1: x - 14 ≥ 0 In this case, the absolute value can be removed, so we have: x - 14 = 8 + 2x
Simplifying: 14 = x + 8 + 2x
Combining like terms: 14 = 3x + 8
Subtracting 8 from both sides: 6 = 3x
Dividing both sides by 3: x = 2
Case 2: x - 14 < 0 In this case, the expression inside the absolute value becomes its negation, so we have: -(x - 14) = 8 + 2x
Simplifying:
- x + 14 = 8 + 2x
Combining like terms: 14 = 3x + 8
Subtracting 8 from both sides: 6 = 3x
Dividing both sides by 3: x = 2
Therefore, the solution to the equation |x - 14| = 8 + 2x is x = 2.
- |x^2 - 4x| = 3x
Once again, we consider two cases based on the sign of the expression inside the absolute value.
Case 1: x^2 - 4x ≥ 0 In this case, the absolute value can be removed, so we have: x^2 - 4x = 3x
Rearranging terms: x^2 - 7x = 0
Factoring out x: x(x - 7) = 0
Setting each factor equal to zero: x = 0 or x - 7 = 0
Therefore, the solutions for this case are x = 0 and x = 7.
Case 2: x^2 - 4x < 0 In this case, the expression inside the absolute value becomes its negation, so we have: -(x^2 - 4x) = 3x
Simplifying: -x^2 + 4x = 3x
Rearranging terms: -x^2 + 4x - 3x = 0
Combining like terms: -x^2 + x = 0
Factoring out x: x(-x + 1) = 0
Setting each factor equal to zero: x = 0 or -x + 1 = 0
Solving the second equation: -x + 1 = 0 x =


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili