Вопрос задан 24.02.2021 в 02:03. Предмет Алгебра. Спрашивает Каспер Лиля.

Ребят помогите решить и объясните пж даю 60 б выполните решение (1-√2) (3+√2) (1+3√2) упростите

выражение √49с-√16с+√25с √8m-0.2√200m+3√72m 7√2-√98+√10
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сляднева Екатерина.
A). √49c-√16c+√25c = 7√c-4√c+5√c=8√c
б)
√8m - 0.2√200m+3√72m=√4*2m-0.2*√100*2m+3*√36*2m=
2√2m-0.2*10√2m+3*6√2m=
2√2m-2√2m+18√2m=18√2m
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте по очереди решим данные задачи.

  1. Выполнение решения (1-√2) (3+√2) (1+3√2): Для упрощения этого выражения мы можем использовать формулу разности квадратов: (a-b)(a+b) = a^2 - b^2. Применим эту формулу:

    (1-√2) (3+√2) (1+3√2) = [(1)^2 - (√2)^2] (1+3√2) = (1 - 2) (1+3√2) = (-1) (1+3√2) = -1 - 3√2

    Таким образом, решение выражения (1-√2) (3+√2) (1+3√2) равно -1 - 3√2.

  2. Упрощение выражения √49с-√16с+√25с: Мы можем использовать свойства корней, чтобы упростить это выражение:

    √49с - √16с + √25с = 7√c - 4√c + 5√c = (7 - 4 + 5)√c = 8√c

    Таким образом, упрощенное выражение √49с-√16с+√25с равно 8√c.

  3. Упрощение выражения √8m - 0.2√200m + 3√72m: Применим свойства корней:

    √8m - 0.2√200m + 3√72m = √(4 * 2 * m) - 0.2√(100 * 2 * m) + 3√(36 * 2 * m) = 2√(2m) - 0.2 * 10√(2m) + 3 * 6√(2m) = 2√(2m) - 2√(2m) + 18√(2m) = 18√(2m)

    Таким образом, упрощенное выражение √8m - 0.2√200m + 3√72m равно 18√(2m).

  4. Упрощение выражения 7√2 - √98 + √10: Используем свойства корней:

    7√2 - √98 + √10 = 7√2 - √(49 * 2) + √(10) = 7√2 - 7√2 + √10 = √10

    Таким образом, упрощенное выражение 7√2 - √98 + √10 равно √10.

Надеюсь, это объ

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос