
Дан куб ABCDA1B1C1D1 найдите угол между прямыми AC и DC1


Ответы на вопрос

Угол между АС и ДС1 = углу между А1С1 и ДС1. Соединим точки А1 и Д.Получим
равносторонний треугольник ДС1А1, так как стороны - это диагонали равных квадратов. В равностороннем треугольнике все углы = 60 градусов



Чтобы найти угол между прямыми AC и DC1 в кубе ABCDA1B1C1D1, нужно определить направляющие векторы этих прямых и затем использовать формулу для нахождения угла между векторами.
В данном случае, прямая AC проходит через вершины A и C, а прямая DC1 проходит через вершины D и C1.
Направляющий вектор прямой AC можно получить, вычислив разность координат вершин C и A:
вектор AC = C - A
Аналогично, направляющий вектор прямой DC1 можно получить вычислив разность координат вершин C1 и D:
вектор DC1 = C1 - D
Затем мы можем использовать формулу для нахождения угла между векторами:
угол = arccos((вектор AC • вектор DC1) / (|вектор AC| * |вектор DC1|))
где • обозначает скалярное произведение векторов, а | | обозначает модуль вектора.
Таким образом, для нахождения угла между прямыми AC и DC1 вам нужно вычислить векторы AC и DC1, а затем применить формулу для нахождения угла.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili