
√2*cosx-1=0 , 3tg 2x+√3=0


Ответы на вопрос

x=±
x= ±
2)



To solve the equations √2cos(x) - 1 = 0 and 3tan(2x) + √3 = 0, let's break them down one by one.
√2cos(x) - 1 = 0: Add 1 to both sides of the equation: √2cos(x) = 1
Divide both sides by √2: cos(x) = 1/√2 Simplifying the right side: cos(x) = √2/2
The value of cos(x) equal to √2/2 occurs in the first and fourth quadrants. In those quadrants, the reference angle with a cosine value of √2/2 is π/4.
Therefore, the solutions for this equation are: x = π/4 + 2πn and x = 7π/4 + 2πn, where n is an integer.
3tan(2x) + √3 = 0: Subtract √3 from both sides of the equation: 3tan(2x) = -√3
Divide both sides by 3: tan(2x) = -√3/3
The value of tan(2x) equal to -√3/3 occurs in the second and fourth quadrants. In those quadrants, the reference angle with a tangent value of -√3/3 is π/6.
Therefore, the solutions for this equation are: 2x = π/6 + πn and 2x = 5π/6 + πn, where n is an integer.
Divide both sides of each equation by 2 to solve for x: x = π/12 + πn/2 and x = 5π/12 + πn/2, where n is an integer.
These are the solutions for the given equations.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili