
-1 < 3-2x/5 <(или равно) 9


Ответы на вопрос

-1 < (3-2x)/5 ≤ 9
-5 < 3-2x ≤ 45
-8 < -2x ≤ 42
4 > x ≥ -21
-21 ≤ x < 4
x ∈ [-21;4)



∈[-21; 4)



To solve the compound inequality -1 < (3 - 2x/5) ≤ 9, we'll break it down into two separate inequalities and solve them individually.
First, let's solve the left inequality: -1 < (3 - 2x/5).
-1 < 3 - 2x/5
To isolate the variable x, we'll subtract 3 from both sides:
-1 - 3 < -2x/5
-4 < -2x/5
To get rid of the fraction, we'll multiply both sides by 5:
-4 * 5 < -2x
-20 < -2x
Now, divide both sides by -2. Since we're dividing by a negative number, the inequality sign will flip:
-20 / -2 > x
10 > x
So the left inequality is x < 10.
Now, let's solve the right inequality: (3 - 2x/5) ≤ 9.
(3 - 2x/5) ≤ 9
To isolate the variable x, we'll subtract 3 from both sides:
(3 - 2x/5) - 3 ≤ 9 - 3
-2x/5 ≤ 6
Next, we'll multiply both sides by 5 to eliminate the fraction:
5 * (-2x/5) ≤ 6 * 5
-2x ≤ 30
Now, divide both sides by -2. Since we're dividing by a negative number, the inequality sign will flip:
-2x / -2 ≥ 30 / -2
x ≥ -15
So the right inequality is x ≥ -15.
Combining the results from the left and right inequalities, we have:
x < 10 and x ≥ -15.
In interval notation, the solution is (-∞, 10) ∪ [-15, +∞).


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili