 
9×7^x-49×3^x>0 ????????????
 0
        0
         0
        0
    Ответы на вопрос
 
        3²7ˣ-7²3ˣ>0
3²7ˣ> 7²3ˣ
(7/3)ˣ>(7/3)²
X>2
 0
                    0
                     0
                    0
                 
        49=7^2
3^2*7^х - 7^2*3^х >0
7^х - 7^2*3^(х-2) >0 все рпзделить на 3^2
7^(х-2) - 3^(х-2) >0 все разделить на 7^2
7^(х-2) > 3^(х-2)
ln(7^(х-2)) > ln(3^(х-2)) ln - натуральный логарифм
(х-2)*ln7 > (x-2)*ln3
Отсюда ln7>ln3, если коэффициент положительный
х-2>0
х>2
Ответ: (2;+бесконечность)
 0
                    0
                     0
                    0
                 
            To solve the inequality 9×7^x - 49×3^x > 0, we can start by factoring out a common term.
Let's express both terms in powers of 3: 9×(7^x) - 49×(3^x)
Now, we can rewrite 7^x as (3^2)^x, which is equal to 3^(2x):
9×(3^(2x)) - 49×(3^x)
To simplify further, we can let y = 3^x:
9y^2 - 49y > 0
Now we have a quadratic inequality. Let's solve it by factoring:
y(9y - 49) > 0
The expression can be positive in two cases:
- When both y and (9y - 49) are positive.
- When both y and (9y - 49) are negative.
Let's solve each case separately:
Case 1: y > 0 and 9y - 49 > 0 y > 0 and y > 49/9
Since y = 3^x, we have: 3^x > 0 and 3^x > 49/9
The first inequality, 3^x > 0, is always true since any positive number raised to any power will be positive.
For the second inequality, 3^x > 49/9, we can take the logarithm (base 3) of both sides to solve for x:
x > log3(49/9)
Case 2: y < 0 and 9y - 49 < 0 y < 0 and y < 49/9
Similarly, since y = 3^x, we have: 3^x < 0 and 3^x < 49/9
The first inequality, 3^x < 0, is never true since any positive number raised to any power will be positive.
For the second inequality, 3^x < 49/9, we can take the logarithm (base 3) of both sides to solve for x:
x < log3(49/9)
To summarize the solutions: x > log3(49/9) for the positive case.
Therefore, the solution to the inequality 9×7^x - 49×3^x > 0 is: x > log3(49/9)
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			