Вопрос задан 16.06.2018 в 22:27. Предмет Алгебра. Спрашивает Гамандий Света.

Теорема. Отношение изоморфизма между частично упорядоченными множествами является отношением

эквивалентности. Нужно доказать.Во всех книгах указанно, что это очевидно, но для меня не очень... помогите
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гонцова Ксения.

Хоть бы определение привели (бог с ним, что вопрос в категории "алгебра 5-9"). Изоморфизм тут означает биективное отображение, сохраняющее порядок? Если так, то отношение изоморфизма:
1) рефлексивно:  в качестве изоморфизма можно взять тождественное отображение
2) симметрично: если есть биекция A -> B, то обратное отображение B -> A (оно существует, т.к. прямое - биекция) будет сохранять порядок:
3) транзитивно: если есть биекция f: A -> B, биекция g: B -> C (обе сохраняют порядок), то gf: A -> C - биекция и сохраняет порядок.

Пародии на доказательства:
2) для всех x, y из A x <= y <-> f(x) <= f(y), тогда для всех u, v из B u <= v <-> f-1(u)<=f-1(v)
(От противного: пусть не так. Обозначим f-1(u)=x и f-1(v)=y и получим противоречие с первым неравенством).
3) для всех x, y из A x <= y <-> f(x) <= f(y), для всех u, v из B u <= v <-> g(u)<=g(v)
x <= y <-> f(x) <= f(y) <-> gf(x) <= gf(y)

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос