
Lg^2 x + 2lg 100x -7 =0


Ответы на вопрос

Lg² x + 2(lg 100+lg x) -7 =0
Lg² x + 2( 2+lg x) -7 =0
Lg² x + 4+2lg x -7 =0
Lg² x + 2lg x -3 =0 lg x=a
a²+2a-3=0
D=4+12=16
a=(-2+4)/2=1 lg x=1 x=10
a=(-2-4)/2=-3 lg x= -3 x=1/1000 =0,001



To solve the equation lg^2(x) + 2lg(100x) - 7 = 0, let's break it down step by step.
First, let's simplify the equation by using a logarithmic property: lg(a^b) = b * lg(a). This property states that the logarithm of a power is equal to the exponent multiplied by the logarithm of the base.
Using this property, we can rewrite the equation as follows:
2lg(x) + 2lg(10) + 2lg(x) - 7 = 0
Simplifying further:
4lg(x) + 2lg(10) - 7 = 0
Next, let's simplify the expression 2lg(10) using a logarithmic property: lg(10) = 1. This property states that the logarithm of 10 to the base 10 is equal to 1.
Substituting lg(10) = 1 in the equation:
4lg(x) + 2(1) - 7 = 0
4lg(x) + 2 - 7 = 0
4lg(x) - 5 = 0
Now, we can isolate the logarithmic term:
4lg(x) = 5
Dividing both sides of the equation by 4:
lg(x) = 5/4
To eliminate the logarithm, we can rewrite the equation in exponential form. In exponential form, if y = log(base a)(x), then x = a^y.
Using this form, we have:
x = 10^(5/4)
Therefore, x = 10^(1.25) ≈ 17.7828.
So the solution to the equation lg^2(x) + 2lg(100x) - 7 = 0 is x ≈ 17.7828.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili