Вопрос задан 10.02.2021 в 04:10. Предмет Алгебра. Спрашивает Плужников Витя.

Решить неравенство log5(4x+1)>-1.Объясните как такое решать

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Котов Михаил.
Решение данного задания

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы решить неравенство log₅(4x+1) > -1, нужно применить свойства логарифмов и неравенства.

  1. Начнем с того, что выразим неравенство без логарифма: log₅(4x+1) > -1

  2. Применим свойство логарифма: logₐ(b) > c эквивалентно a^c < b. В данном случае получим: 5^(-1) < 4x+1

  3. Выполним простые вычисления: 1/5 < 4x+1

  4. Теперь решим неравенство относительно x. Вычтем 1 из обеих сторон: 1/5 - 1 < 4x

  5. Упростим: -4/5 < 4x

  6. Разделим обе части на 4: -1/5 < x

  7. Неравенство можно записать в более распространенной форме: x > -1/5

Таким образом, решением данного неравенства является интервал (-1/5, +∞), то есть любое число x, большее чем -1/5.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос