Вопрос задан 10.02.2021 в 01:22. Предмет Алгебра. Спрашивает Стороженко Юлия.

Решите уравнение |2x^3-11x+2|=x+2

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Савицкий Дмитрий.

Решение на фото, уравнение решено.


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы решить данное уравнение, разобьем его на два отдельных уравнения без модуля, учитывая два возможных случая:

  1. Когда выражение в модуле (2x^3-11x+2) положительно или равно нулю: 2x^3 - 11x + 2 = x + 2

    Перенесем все термины на одну сторону уравнения: 2x^3 - 11x - x = 2 - 2 2x^3 - 12x = 0

    Выносим x за скобки: x(2x^2 - 12) = 0

    Таким образом, получаем два уравнения: x = 0 или 2x^2 - 12 = 0

    Решим второе уравнение: 2x^2 - 12 = 0 x^2 - 6 = 0 (x - √6)(x + √6) = 0

    Значит, получаем два дополнительных решения: x = √6 или x = -√6

    Итак, в первом случае, когда выражение в модуле положительно или равно нулю, имеем три решения: x = 0, √6, -√6

  2. Когда выражение в модуле (2x^3-11x+2) отрицательно: -(2x^3 - 11x + 2) = x + 2

    Умножаем все термины на -1, чтобы избавиться от отрицательного знака: 2x^3 - 11x + 2 = -x - 2

    Переносим все термины на одну сторону уравнения: 2x^3 - 11x + x = -2 - 2 2x^3 - 10x = -4

    Решить это уравнение может быть сложно, поскольку оно третьей степени. Решение третьей степени часто требует использования численных методов или приближенных методов.

    Округлим ответ до двух десятичных знаков: x ≈ -1.23

Итак, все решения уравнения |2x^3-11x+2|=x+2: x = 0, √6, -√6, -1.23 (округленное значение)

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос