
Вопрос задан 15.11.2020 в 05:24.
Предмет Алгебра.
Спрашивает Маргус Илья.
Розв'яжіть рівняння cos(x^3+y+1)=x^2+2x+2


Ответы на вопрос

Отвечает Чуркин Никита.
X²+2x+2≥1
cos(x³+y+1)≤1
Раз правая часть больше или равна единице, а левая меньше или равна единице, то логично что обе части будут равны тогда и только тогда когда каждая из них равна 1. Получаем систему:
{x²+2x+2=1
{cos(x³+y+1)=1
Из первого уравнения легко находим x=-1. Подставляем его во второе уравнение:
cos((-1)³+y+1)=1
cosy=1
y=2πn, n∈Z
Вот и все.
Ответ: (-1; 2πn) n∈Z
cos(x³+y+1)≤1
Раз правая часть больше или равна единице, а левая меньше или равна единице, то логично что обе части будут равны тогда и только тогда когда каждая из них равна 1. Получаем систему:
{x²+2x+2=1
{cos(x³+y+1)=1
Из первого уравнения легко находим x=-1. Подставляем его во второе уравнение:
cos((-1)³+y+1)=1
cosy=1
y=2πn, n∈Z
Вот и все.
Ответ: (-1; 2πn) n∈Z


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili