Вопрос задан 12.01.2020 в 07:24. Предмет Физика. Спрашивает Поддубная Кариночка.

ДАЮ 25 БАЛЛОВ!!!получено 10^-6 м^3 водорода при температуре 300 К и давлении 1,2*10^5 Па. Каким

будет объем водорода при нормальных условиях?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ковшечников Константин.
(P*V)/(Pну*Vну)=T/Tну

Vну=(P*V*Tну)/(T*Pну)

Vну=(1.2*10^5*10^-6*273)/(300*1.01*10^5)=1.08*10^-6 (м^3)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи можно использовать уравнение состояния идеального газа:

\[ PV = nRT \]

Где: - \( P \) - давление газа - \( V \) - объем газа - \( n \) - количество вещества газа (в молях) - \( R \) - универсальная газовая постоянная (\( 8.314 \, \text{Дж/(моль·К)} \)) - \( T \) - температура газа в Кельвинах

Для перехода от начальных условий (300 K, 1,2*10^5 Па) к нормальным условиям (273,15 K, 1 атмосфера = 101325 Па) можно использовать формулу Менделеева-Клапейрона:

\[ \frac{P_1 \cdot V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2} \]

где индексы 1 и 2 обозначают начальные и конечные условия соответственно.

Итак, у нас есть начальный объем (\( V_1 = 10^{-6} \, \text{м}^3 \)), начальная температура (\( T_1 = 300 \, \text{K} \)) и начальное давление (\( P_1 = 1,2 \times 10^5 \, \text{Па} \)).

Нормальные условия: \( T_2 = 273,15 \, \text{K} \) и \( P_2 = 1,01325 \times 10^5 \, \text{Па} \) (1 атмосфера).

Давайте найдем \( V_2 \), объем газа при нормальных условиях, используя формулу Менделеева-Клапейрона:

\[ \frac{P_1 \cdot V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2} \]

\[ V_2 = \frac{P_1 \cdot V_1 \cdot T_2}{P_2 \cdot T_1} \]

\[ V_2 = \frac{(1,2 \times 10^5 \, \text{Па}) \cdot (10^{-6} \, \text{м}^3) \cdot 273,15 \, \text{K}}{(1,01325 \times 10^5 \, \text{Па}) \cdot 300 \, \text{K}} \]

Подставим значения и рассчитаем \( V_2 \):

\[ V_2 = \frac{3,2778 \times 10^{-1} \, \text{м}^3 \cdot \text{К}}{3,03975 \times 10^7 \, \text{Па} \cdot \text{К}} \] \[ V_2 ≈ 1,078 \times 10^{-8} \, \text{м}^3 \]

Таким образом, объем водорода при нормальных условиях составляет приблизительно \( 1,078 \times 10^{-8} \, \text{м}^3 \).

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Я могу помочь вам с решением вашего вопроса по физике.

Ваш вопрос: получено 10^-6 м^3 водорода при температуре 300 К и давлении 1,2*10^5 Па. Каким будет объем водорода при нормальных условиях?

Решение: для решения этой задачи мы можем использовать закон Бойля-Мариотта, который говорит, что при постоянной температуре произведение давления и объема идеального газа постоянно. То есть:

P1 * V1 = P2 * V2

где P1 и V1 - давление и объем газа в начальном состоянии, а P2 и V2 - давление и объем газа в конечном состоянии.

Нормальные условия - это условия, при которых давление газа равно 1 атмосфере (1,013 * 10^5 Па), а температура равна 273 К. Тогда мы можем подставить известные значения в формулу и найти искомый объем:

V2 = (P1 * V1) / P2

V2 = (1,2 * 10^5 * 10^-6) / (1,013 * 10^5)

V2 = 1,18 * 10^-6 м^3

Ответ: объем водорода при нормальных условиях будет равен 1,18 * 10^-6 м^3.

0 0

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос