
X(t)=150-5t+2,5^2, определите значения Vx(скорость) и ax (ускорение).


Ответы на вопрос




Итак, у вас есть уравнение пути \(X(t) = 150 - 5t + 2.5t^2\), и вы хотите определить скорость (\(V_x\)) и ускорение (\(a_x\)).
Чтобы найти скорость, нужно взять производную по времени от уравнения пути \(X(t)\). Для этого нужно найти производную \(X(t)\) по \(t\) и это будет \(V_x(t)\):
\[V_x(t) = \frac{dX}{dt}\]
Исходное уравнение пути:
\[X(t) = 150 - 5t + 2.5t^2\]
Возьмем производную \(X(t)\) по \(t\):
\[V_x(t) = \frac{dX}{dt} = \frac{d}{dt} (150 - 5t + 2.5t^2)\]
\[V_x(t) = -5 + 5t\]
Это уравнение дает нам скорость \(V_x\) в зависимости от времени \(t\).
Теперь, чтобы найти ускорение (\(a_x\)), нужно взять вторую производную уравнения \(X(t)\) по \(t\):
\[a_x(t) = \frac{d^2X}{dt^2}\]
Производная \(V_x(t) = -5 + 5t\) по \(t\):
\[a_x(t) = \frac{dV_x}{dt} = \frac{d}{dt} (-5 + 5t)\]
\[a_x(t) = 5\]
Таким образом, скорость \(V_x\) в данном случае равна \(-5 + 5t\), а ускорение \(a_x\) постоянно и равно 5.


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili