
Помогите пжлста срочняк просто... Электрон с энергией Wk = 6,4*10-17 Дж (в бесконечности) движется
вдоль линии напряженности по направлению к поверхности металлической заряженной сферы радиусом R =10 см. Определить минимальное расстояние rmin , на которое приблизится электрон к поверхности сферы, если её заряд Q = –10 нКл.

Ответы на вопрос




Calculation of the Minimum Distance an Electron Approaches a Charged Sphere
To determine the minimum distance an electron approaches the surface of a charged sphere, we can use the given information about the electron's energy and the sphere's properties.
The energy of the electron, Wk, is given as 6.4 * 10^(-17) J. The sphere has a radius, R, of 10 cm, and a charge, Q, of -10 nC.
To find the minimum distance, rmin, we can use the equation for the electric potential energy of a charged particle near a charged sphere:
Wk = q * V
where Wk is the kinetic energy of the electron, q is the charge of the electron, and V is the electric potential at the surface of the sphere.
The electric potential at the surface of a charged sphere is given by:
V = k * Q / R
where k is the Coulomb constant (approximately 9 * 10^9 Nm^2/C^2), Q is the charge of the sphere, and R is the radius of the sphere.
Substituting the values into the equation, we have:
6.4 * 10^(-17) J = q * (k * Q / R)
To find the charge of the electron, q, we can rearrange the equation:
q = (6.4 * 10^(-17) J) / (k * Q / R)
Now we can substitute the given values into the equation:
q = (6.4 * 10^(-17) J) / (9 * 10^9 Nm^2/C^2 * (-10 * 10^(-9) C) / (0.1 m))
Simplifying the equation, we get:
q = -0.071 mC
Now that we have the charge of the electron, we can find the minimum distance, rmin, using the equation for the electric potential at a distance r from the center of the sphere:
V = k * Q / r
Rearranging the equation, we have:
r = k * Q / V
Substituting the values into the equation, we get:
rmin = (9 * 10^9 Nm^2/C^2 * (-10 * 10^(-9) C)) / (6.4 * 10^(-17) J / (0.1 m))
Simplifying the equation, we find:
rmin = -1.40625 m
Therefore, the minimum distance, rmin, at which the electron approaches the surface of the charged sphere is approximately -1.40625 meters.
Please note that the negative sign indicates that the electron approaches the surface from the inside of the sphere.


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili