
Физика: 1) За какое время автомобиль двигаясь с ускорением 0,4 м/с увеличит свою скорость с 12 м/с
до 20 м\с 2) Мальчик бросил вертикально вверх мяч и поймал его через 2 сек, на какую высоту поднялся мяч, какова его начальная скорость? 3) Найти центростремительное ускорение точек колеса автомобиля соприкасающееся с дорогой, если автомобиль движется 72 км/с, при этом частота вращения колеса 8с 4) Найти частоту обращения луны вокруг земли.

Ответы на вопрос

1) dV=V1-V1 =>dV=20-12=8м/c t=V/a=> t=8/0,4=20c



Physics Questions
1) Time to Increase Speed: To calculate the time it takes for a car to increase its speed from 12 m/s to 20 m/s with an acceleration of 0.4 m/s^2, we can use the following kinematic equation:
v = u + at
Where: - v = final velocity (20 m/s) - u = initial velocity (12 m/s) - a = acceleration (0.4 m/s^2) - t = time
Solving for t: 20 m/s = 12 m/s + (0.4 m/s^2) * t t = (20 m/s - 12 m/s) / 0.4 m/s^2 t = 8 s
So, it will take the car 8 seconds to increase its speed from 12 m/s to 20 m/s.
2) Vertical Motion of the Ball: When a ball is thrown vertically upward and caught after 2 seconds, we can calculate the height it reaches and its initial velocity using the following kinematic equations:
v = u + gt s = ut + (1/2)gt^2
Where: - v = final velocity (0 m/s at the peak) - u = initial velocity (upward, to be calculated) - g = acceleration due to gravity (-9.81 m/s^2) - t = time (2 s) - s = height reached
Using the first equation, we can solve for the initial velocity: 0 m/s = u - 9.81 m/s^2 * 2 s u = 19.62 m/s
Using the second equation, we can solve for the height reached: s = (19.62 m/s) * 2 s + (1/2)(-9.81 m/s^2)(2 s)^2 s = 19.62 m * 2 s - 4.905 m/s^2 * 4 s^2 s = 39.24 m - 19.62 m s = 19.62 m
So, the ball reaches a height of 19.62 meters, and its initial velocity is 19.62 m/s upward.
3) Centripetal Acceleration of Car Wheel: The centripetal acceleration of a point on the car wheel in contact with the road can be calculated using the formula:
a = rω^2
Where: - a = centripetal acceleration - r = radius of the wheel - ω = angular velocity
First, we need to convert the speed of the car from km/s to m/s: 72 km/s = 72000 m/s
Then, we can calculate the angular velocity using the formula: ω = 2πf Where f is the frequency of rotation.
Given that the frequency of rotation is 8 s, we can calculate ω: ω = 2π / 8 ω = π / 4 rad/s
Now, we can calculate the centripetal acceleration using the formula: a = (72000 m) * (π / 4 rad/s)^2 a ≈ 56548.19 m/s^2
So, the centripetal acceleration of the point on the car wheel in contact with the road is approximately 56548.19 m/s^2.
4) Lunar Orbital Frequency: The frequency of revolution of the Moon around the Earth can be calculated using the formula:
f = 1 / T
Where: - f = frequency - T = time period
The time period for one complete revolution of the Moon around the Earth is approximately 27.3 days.
Converting the time period to seconds: 27.3 days * 24 hours/day * 60 minutes/hour * 60 seconds/minute ≈ 2.36 × 10^6 seconds
Now, we can calculate the frequency: f = 1 / (2.36 × 10^6 seconds) f ≈ 4.24 × 10^-7 Hz
So, the frequency of revolution of the Moon around the Earth is approximately 4.24 × 10^-7 Hz.
I hope this helps! If you have further questions or need additional assistance, feel free to ask.


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili