
Вопрос задан 27.04.2019 в 06:34.
Предмет Физика.
Спрашивает Ташкин Сергей.
Найти отношение длин нитяных маятников, если за одно и то же время первый совершил 10 колебаний, а
второй 30? УМОЛЯЮ, ПОМОГИТЕ!!!!))))

Ответы на вопрос

Отвечает Коваль Марк.
Период нитяного маятника T=2π√l/g, следовательно если по условию время одинаковое, значит можно приравнять периоды этих маятников. при этом 2π
сократится и на g тоже можно сократить. значить их отношения 10/30=1/3
сократится и на g тоже можно сократить. значить их отношения 10/30=1/3



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для решения этой задачи мы можем воспользоваться формулой для периода колебаний нитяного маятника:
T = 2π√(l/g)
Где T - период колебаний, l - длина нити, g - ускорение свободного падения.
Отношение периодов двух маятников можно найти, поделив один период на другой:
T1/T2 = (2π√(l1/g)) / (2π√(l2/g))
2π и g сокращаются, и мы получаем:
T1/T2 = √(l1/l2)
Теперь у нас есть отношение длин нитей:
T1/T2 = √(l1/l2)
Если первый маятник совершил 10 колебаний за время T1, а второй маятник совершил 30 колебаний за время T2, то отношение периодов колебаний будет:
10/T1 = 30/T2
Теперь мы можем найти отношение длин нитей:
T1/T2 = 10/30 = 1/3
Ответ: отношение длин нитейных маятников равно 1/3.


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili