Вопрос задан 07.05.2018 в 19:32. Предмет Физика. Спрашивает Блок Богдана.

На какой глубине радиус пузырька воздуха вдвое меньше, чем у поверхности воды, если атмосферное

давление у поверхности воды 10^5 Па? Изменение температуры воды с глубиной не учитывайте
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Салимов Илья.

Допустим в пузырьках содержится идеальный газ - воздух.
Про температуру ничего не сказано, будем считать её постоянной.
Тогда по закону Бойля-Мариотта произведение давления газа на объём - величина постоянная.
Давление с глубиной возрастает так P = Pатм + ро*g*h, где ро - плотность воды, h - глубина.
Пусть Vпов - объём пузырька на поверхности, Vглуб - на глубине
Составим равенство
Pатм*Vпов = (Pатм + ро*g*h)*Vглуб
Или
Vпов/Vглуб = (Pатм + ро*g*h) / Pатм = 1 + ро*g*h / Pатм
Форма пузырька - шар. Его объём пропорционален кубу радиуса, а точнее V = (4пи/3)R^3
Тогда
(Rпов/Rглуб) ^3 = 1 + ро*g*h / Pатм
Нам дано, что Rпов/Rглуб = 2, значит
1 + ро*g*h / Pатм = 8
ро*g*h / Pатм = 7
Отсюда выразим h = 7Pатм / ро*g = 7*10^5 Па/ (1000 кг/м^3 * 9,81 м/с^2)
Получаем 71,36 метров

0 0

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос