
Пуля, летящая горизонтально, попадает в шар, подвешенный на легком жестком стержне, и застревает в
нем. Масса пули 5г, масса шара 0,5кг. Скорость пули 500 м/с. При какой предельной длине стержня (расстояние точки подвеса до центра шара) шар от удара пули поднимается до верхней точки окружности

Ответы на вопрос




Calculation of the Maximum Length of the Rod
To determine the maximum length of the rod (the distance from the suspension point to the center of the sphere) at which the sphere will rise to the highest point of the circle after being hit by the bullet, we can use the principle of conservation of momentum.
The momentum of the bullet before the collision is equal to the momentum of the bullet and the sphere after the collision. Since the bullet gets embedded in the sphere, the combined mass of the bullet and the sphere after the collision is equal to the mass of the sphere alone.
Let's denote the maximum length of the rod as L.
The momentum of the bullet before the collision is given by:
momentum_before = mass_bullet * velocity_bullet The momentum of the bullet and the sphere after the collision is given by:
momentum_after = mass_sphere * velocity_after_collision Since the bullet gets embedded in the sphere, the velocity of the bullet after the collision is zero. Therefore, the momentum after the collision is equal to the momentum of the sphere alone:
momentum_after = mass_sphere * velocity_sphere Equating the two momenta, we have:
mass_bullet * velocity_bullet = mass_sphere * velocity_sphere
Substituting the given values:
5g * 500 m/s = 0.5kg * velocity_sphere
Simplifying the equation:
velocity_sphere = (5g * 500 m/s) / 0.5kg
Now, we can calculate the velocity of the sphere after the collision.
Next, we can use the conservation of energy to determine the maximum length of the rod. The initial kinetic energy of the bullet is equal to the final potential energy of the sphere at the highest point of the circle.
The initial kinetic energy of the bullet is given by:
kinetic_energy_bullet = (1/2) * mass_bullet * velocity_bullet^2 The final potential energy of the sphere at the highest point of the circle is given by:
potential_energy_sphere = mass_sphere * g * height Since the sphere rises to the highest point of the circle, the height is equal to the radius of the circle.
Equating the initial kinetic energy and the final potential energy, we have:
(1/2) * mass_bullet * velocity_bullet^2 = mass_sphere * g * height
Substituting the given values:
(1/2) * 5g * (500 m/s)^2 = 0.5kg * 9.8 m/s^2 * height
Simplifying the equation:
height = [(1/2) * 5g * (500 m/s)^2] / (0.5kg * 9.8 m/s^2)
Now, we can calculate the height of the sphere at the highest point of the circle.
Finally, we can use the height and the radius of the circle to determine the maximum length of the rod:
L = height + radius
Substituting the calculated values, we can find the maximum length of the rod.
Please note that the calculations provided above are based on the given information and assumptions. If there are any additional factors or considerations, they should be taken into account for a more accurate analysis.
Let me know if you need further assistance!


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili