Вопрос задан 24.02.2019 в 06:51. Предмет Физика. Спрашивает Узакбай Динара.

Груз массой 50 г совершает колебания на пружине жесткостью 2,0 кН/м.Определите наибольшую скорость

груза ,если амплитуда колебаний равна 30мм.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Леонтьева Милена.
Используем закон сохранения энергии:
k*xm^2/2=m*Vm^2/2
Vm=sqrt(k*xm^2/m)= xm*sqrtk/m)=0,03*(2000/0,05)=6 м/с
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Определение наибольшей скорости груза при колебаниях на пружине

Для определения наибольшей скорости груза при колебаниях на пружине, мы можем использовать закон сохранения механической энергии. При колебаниях на пружине, энергия переходит между потенциальной и кинетической формами.

Амплитуда колебаний (A) равна 30 мм, что составляет 0,03 метра. Масса груза (m) равна 50 граммам, что составляет 0,05 кг.

Жесткость пружины (k) равна 2,0 кН/м, что составляет 2000 Н/м.

Максимальная скорость груза (v) может быть определена с использованием следующей формулы:

v = √(2A^2k/m)

Подставляя значения, получаем:

v = √(2 * 0.03^2 * 2000 / 0.05)

Расчеты: v = √(2 * 0.0009 * 2000 / 0.05) v = √(0.036 / 0.05) v = √0.72 v ≈ 0.848 м/с

Таким образом, наибольшая скорость груза при колебаниях на пружине составляет примерно 0,848 м/с.

0 0

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос