
Буду очень благодарна тому, кто решит)) Даю много баллов! Как изменится заряд шара, заряженного
положительно, если к нему прикоснуться пальцем? Заряд металлического шарика равен -1,6нКл. Сколько избыточных электронов на шарике? Сколько электронов было снято при трении со стеклянной палочки, если ее заряд равен 3,2 мкКл?. Чему равен заряд металлического шара, если на нем находится 4,8·1010 избыточных электронов? Электроскопу сообщали заряд, равный -3,2·1010?Кл. Какому числу электронов соответствует этот заряд? При каких условиях, можно наэлектризовать кусок металла? Как показать, что при взаимном трении двух тел оба тела электризуются, но разноименными зарядами? На тонких шелковых нитях подвешены два совершенно одинаковых бузиновых шарика, один заряженный другой — незаряженный. Как определить, какой шарик заряжен? Два заряда находятся на некотором расстоянии друг от друга. Заряд одного больше заряда другого. Ближе к какому заряду между ними надо поместить третий заряд одинакового с ними знака, чтобы он остался в равновесии? . Чем объяснить, что легкий бузиновый шарик, приставший вначале к наэлектризованной палочке, затем отталкивается от нее? Согласно электронной теории, в металлических проводниках могут свободно передвигаться только отрицательные заряды — электроны. Как на основе этой теории объяснить, что проводник может быть заряжен: 1) отрицательно; 2) положительно? . Два шарика А и В противоположно заряжены (рис. 67). Около шарика А помещен маленький шарик а, заряженный положительно. Как будет двигаться шарик а? . Почему незаряженный металлический шарик всегда притягивается, а не отталкивает от заряженной любым зарядом палки? . Почему можно наэлектризовать трением эбонитовую палку, держа ее в руке, и нельзя, держа в руке, наэлектризовать латунный стержень, даже касаясь этим стержнем заряженного тела?

Ответы на вопрос

N=q/e
q - заряд
N - количество электронов
e=1.6*10^-19
1) N=10^10
2) N=2*10^13
3) q=7,68*10^-9
4) N = 2*10^9
5) трением или соприкосновением с заряженным телом
с помощью "султанчиков" или электроскопа. коснуться одним куском металла, потом другим, заряд на электроскопе в итоге будет ноль
6) поднести лёгкие предметы (бумажки, волосы, перья), к заряженному они прилипнут, к обычному - нет
7) к меньшему заряду, чтобы силы были равны
8) шарик электризуется тем же зарядом, что и палочка, а в начале он был нейтрален
9) отрицательно - когда избыток электронов, положительно - когда недостаток
10)
11) потому что он нейтрален
12) латунь проводит ток, а эбонит - нет



How will the charge of a positively charged sphere change if you touch it with your finger?
When you touch a positively charged sphere with your finger, the excess positive charge on the sphere will be neutralized by the electrons present in your finger. This will result in a decrease in the overall charge of the sphere. The charge acquired by the sphere will depend on the number of excess electrons transferred from your finger to the sphere.
How many excess electrons are on the metal sphere with a charge of -1.6 nC?
To determine the number of excess electrons on the metal sphere, we can use the formula:
Q = ne
Where: - Q is the charge on the sphere (-1.6 nC) - n is the number of excess electrons - e is the charge of an electron (1.6 x 10^-19 C)
Rearranging the formula, we can solve for n:
n = Q / e
Substituting the values, we get:
n = (-1.6 x 10^-9 C) / (1.6 x 10^-19 C)
Simplifying the expression, we find:
n = -1 x 10^10 excess electrons
Therefore, there are 1 x 10^10 excess electrons on the metal sphere.
How many electrons were removed when rubbing with a glass rod with a charge of 3.2 μC?
To determine the number of electrons removed when rubbing with a glass rod, we can use the same formula as before:
Q = ne
Where: - Q is the charge on the glass rod (3.2 μC) - n is the number of electrons removed - e is the charge of an electron (1.6 x 10^-19 C)
Rearranging the formula, we can solve for n:
n = Q / e
Substituting the values, we get:
n = (3.2 x 10^-6 C) / (1.6 x 10^-19 C)
Simplifying the expression, we find:
n = 2 x 10^13 electrons
Therefore, 2 x 10^13 electrons were removed when rubbing with the glass rod.
What is the charge of the metal sphere if it has 4.8 x 10^10 excess electrons?
To determine the charge of the metal sphere, we can use the same formula as before:
Q = ne
Where: - Q is the charge on the sphere - n is the number of excess electrons (4.8 x 10^10) - e is the charge of an electron (1.6 x 10^-19 C)
Substituting the values, we get:
Q = (4.8 x 10^10) x (1.6 x 10^-19 C)
Simplifying the expression, we find:
Q = 7.68 x 10^-9 C
Therefore, the charge of the metal sphere is 7.68 x 10^-9 C.
How many electrons correspond to a charge of -3.2 x 10^10 C reported by the electroscope?
To determine the number of electrons corresponding to a charge of -3.2 x 10^10 C, we can use the same formula as before:
Q = ne
Where: - Q is the charge reported by the electroscope (-3.2 x 10^10 C) - n is the number of electrons - e is the charge of an electron (1.6 x 10^-19 C)
Rearranging the formula, we can solve for n:
n = Q / e
Substituting the values, we get:
n = (-3.2 x 10^10 C) / (1.6 x 10^-19 C)
Simplifying the expression, we find:
n = -2 x 10^29 electrons
Therefore, -2 x 10^29 electrons correspond to a charge of -3.2 x 10^10 C.
Under what conditions can a piece of metal be electrified?
A piece of metal can be electrified under the following conditions: 1. Friction: When a piece of metal is rubbed against another material, such as a cloth or another piece of metal, electrons can be transferred between the two materials, resulting in the metal becoming charged. 2. Contact with a charged object: When a charged object comes into contact with a piece of metal, electrons can be transferred between the two, resulting in the metal becoming charged. 3. Induction: When a charged object is brought near a piece of metal without direct contact, the charges in the metal can be rearranged, resulting in one side of the metal becoming charged.
How can you show that when two objects rub against each other, both objects become charged with opposite charges?
To show that when two objects rub against each other, both objects become charged with opposite charges, you can perform the following experiment: 1. Rub a glass rod with a silk cloth to charge it positively. 2. Rub an ebonite rod with a wool cloth to charge it negatively. 3. Bring the charged glass rod near the charged ebonite rod without touching them. 4. Observe that the rods repel each other, indicating that they have the same charge. 5. Bring the charged glass rod near a neutral metal object, such as an electroscope. 6. Observe that the metal object is attracted to the glass rod, indicating that it has the opposite charge.
This experiment demonstrates that when two objects rub against each other, both objects become charged with opposite charges.
How can you determine the charge on a pair of identical elderberry balls, one charged and the other uncharged?
To determine the charge on a pair of identical elderberry balls, one charged and the other uncharged, you can perform the following experiment: 1. Hang the elderberry balls from thin silk threads so that they can swing freely. 2. Bring a charged object, such as a glass rod rubbed with silk, near the balls without touching them. 3. Observe the behavior of the balls. - If the charged ball is attracted to the glass rod, it indicates that the charged ball has the opposite charge to the glass rod and is therefore charged. - If the uncharged ball is attracted to the glass rod, it indicates that the uncharged ball has the same charge as the glass rod and is therefore charged.
By observing the behavior of the balls when a charged object is brought near them, you can determine which ball is charged and the nature of its charge.
If two charges are at some distance from each other, and one charge is greater than the other, where should a third charge of the same sign be placed between them to remain in equilibrium?
If two charges are at some distance from each other, and one charge is greater than the other, a third charge of the same sign should be placed closer to the smaller charge between them to remain in equilibrium. This is because the force between two charges is inversely proportional to the square of the distance between them. By placing the third charge closer to the smaller charge, the forces exerted by the two charges on the third charge will be balanced, resulting in equilibrium.
Why does a lightweight elderberry ball, initially touching an electrified rod, later repel from it?
The repulsion between a lightweight elderberry ball and an electrified rod can be explained by the transfer of charge through the process of induction. When the elderberry ball initially touches the electrified rod, electrons from the rod are repelled and move to the opposite side of the ball, leaving the side in contact with the rod positively charged. This creates an imbalance of charges, with the side of the ball facing away from the rod becoming negatively charged. As like charges repel, the negatively charged side of the ball repels the negatively charged rod, causing the ball to move away from the rod.
According to the electron theory, only negative charges (electrons) can move freely in metallic conductors. How can a conductor be charged positively or negatively?
According to the electron theory, only negative charges (electrons) can move freely in metallic conductors. However, a conductor can still be charged positively or negatively due to the movement of electrons within the conductor. When a conductor is charged positively, it means that some electrons have been removed from the conductor, resulting in an excess of positive charge. This can be achieved through processes such as friction or contact with a positively charged object. Similarly, when a conductor is charged negatively, it means that some electrons have been added to the conductor, resulting in an excess of negative charge. This can be achieved through processes such as friction or contact with a negatively charged object.
Two balls A and B are oppositely charged. A small positively charged ball a is placed near ball A. How will ball a move?
When a small positively charged ball a is placed near a larger oppositely charged ball A, ball a will be attracted to ball A. This is because opposite charges attract each other. The positive charge on ball a will experience an attractive force towards the negative charge on ball A, causing ball a to move towards ball A.
Why does an uncharged metal ball always attract, rather than repel, when brought near a charged object?
An uncharged metal ball always attracts, rather than repels, when brought near a charged object because of the redistribution of charges within the metal ball. When a charged object is brought near the uncharged metal ball, the charges in the metal ball rearrange themselves. The side of the metal ball closest to the charged object becomes oppositely charged, while the side farthest from the charged object becomes similarly charged. This creates an imbalance of charges, resulting in an attractive force between the charged object and the metal ball. As a result, the uncharged metal ball is


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili