Вопрос задан 17.01.2019 в 23:38. Предмет Физика. Спрашивает Ткаченко Коля.

Два идеально упругих шарика массами m1 и m2 вдоль одной и той же прямой со скоростями v1 и v2 . Во

время столкновения шарики начинают деформироваться, и часть кинетической энергии переходит в потенциальную энергию деформации. Затем деформация уменьшается, и запасенная потенциальная энергия вновь переходит в кинетическую. Найти значение потенциальной энергии деформации в момент, когда она максимальна.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шумакова Ирина.
Энергия будет максимальна, когда после удара сравняются скорости тел(а то есть относительная скорость будет равна нулю) найдем эту скорость из закона сохранения импульса:
m_1v_1+m_2v_2=m_1v_3+m_2v_3\\v_3=\cfrac{m_1v_1+m_2v_2}{m_1+m_2}
Теперь найдем максимальную кинетическую энергию, которая равна потенциальной:
E_{max}=\cfrac{m_1v_1^2}{2}+\cfrac{m_2v_2^2}{2}-\cfrac{(m_1+m_2)v_3^2}{2}\\v_3=\cfrac{m_1v_1+m_2v_2}{m_1+m_2}\\\cfrac{m_1}{2}(v_1^2-v_3^2)+\cfrac{m_2}{2}(v_2^2-v_3^2)=\\=\cfrac{m_1}{2}\left(v_1^2-\left(\cfrac{m_1v_1+m_2v_2}{m_1+m_2}\right)^2\right)+\cfrac{m_2}{2}\left(v_2^2-\left(\cfrac{m_1v_1+m_2v_2}{m_1+m_2}\right)^2\right)
Ответ:
E_{max}=\cfrac{m_1}{2}\left(v_1^2-\left(\cfrac{m_1v_1+m_2v_2}{m_1+m_2}\right)^2\right)+\cfrac{m_2}{2}\left(v_2^2-\left(\cfrac{m_1v_1+m_2v_2}{m_1+m_2}\right)^2\right)
0 0

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос