
Вопрос задан 12.12.2018 в 07:15.
Предмет Физика.
Спрашивает Шиндлер Виталя.
Привет). Помогите с решением.Однородный диск радиусом R=0,5 м катится без проскальзывания со
скоростью u=2 м/с. Найти скорость точек диска A, B, C, D, E. Найти геометрическое место всех точек диска, скорость которых u=2 м/с. Угол a=60 градусов.


Ответы на вопрос

Отвечает Калинина Оксана.
Основная идея этой задачи состоит буквально в следующем:
1. Мгновенный центр вращения в каждый момент времени - точка касания диска и земли (действительно, относительно земли только она остается в покое, пусть даже на бесконечно маленький промежуток времени).
2. Диск вращается твердотельно, т.е. угловые скорости всех точек диска равны между собой.
Итак, в данный момент времени (который на картинке), качение диска можно эквивалентно заменить на его вращение вокруг точки А. Пишем:
(определение)
Поскольку нас волнует только модуль скорости и диск движется только в одной плоскости, на векторное произведение мы можем спокойно забить и писать уравнения для модуля поступательной скорости:
,
здесь r - расстояние от центра вращения до точки, в которой нужно посчитать скорость.
Итак,
для центра:
для т. С:
для т-к B и D:
С точкой Е чуть-чуть сложнее.
Заметим, что треугольник AOE - равнобедренный, тогда сторона AE равно радиусу диска. Таким образом,
.
Отвечая на второй вопрос, потребуем, чтобы поступательная скорость движения некоторых точек диска была равна скорости центра:

Теперь заметим, что в левой части скорость обязана быть постоянной (по условию) и в правой части угловая скорость также постоянная (так как диск - твердое тело). В таком случае, и радиус тоже должен быть постоянным и равным радиусу диска (
).
Теперь становится очевидным, что геометрическое место точек диска, движущихся со скоростью его центра - это дуга окружности радиусом, равным радиусу диска с центром в точке его касания с землей и, как легко показать, величиной в 120 градусов.
1. Мгновенный центр вращения в каждый момент времени - точка касания диска и земли (действительно, относительно земли только она остается в покое, пусть даже на бесконечно маленький промежуток времени).
2. Диск вращается твердотельно, т.е. угловые скорости всех точек диска равны между собой.
Итак, в данный момент времени (который на картинке), качение диска можно эквивалентно заменить на его вращение вокруг точки А. Пишем:
Поскольку нас волнует только модуль скорости и диск движется только в одной плоскости, на векторное произведение мы можем спокойно забить и писать уравнения для модуля поступательной скорости:
здесь r - расстояние от центра вращения до точки, в которой нужно посчитать скорость.
Итак,
для центра:
для т. С:
для т-к B и D:
С точкой Е чуть-чуть сложнее.
Заметим, что треугольник AOE - равнобедренный, тогда сторона AE равно радиусу диска. Таким образом,
Отвечая на второй вопрос, потребуем, чтобы поступательная скорость движения некоторых точек диска была равна скорости центра:
Теперь заметим, что в левой части скорость обязана быть постоянной (по условию) и в правой части угловая скорость также постоянная (так как диск - твердое тело). В таком случае, и радиус тоже должен быть постоянным и равным радиусу диска (
Теперь становится очевидным, что геометрическое место точек диска, движущихся со скоростью его центра - это дуга окружности радиусом, равным радиусу диска с центром в точке его касания с землей и, как легко показать, величиной в 120 градусов.


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili