Вопрос задан 28.06.2023 в 01:37. Предмет Физика. Спрашивает Булатов Даниил.

Напишите все про течение жидких сред! НЕ ГАЗООБРАЗНЫХ СРЕД, а жидких.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Илесов Батыр.

Ответ:

Объяснение:

ГИДРОГАЗОДИНАМИКА

1. Кинематика жидкой среды

Законы сохранения, используемые в механике жидкости. Значение

гидрогазодинамики в энергетике теплотехнологии.

Основные физические свойства жидкостей и газов. Сжимаемость. Текучесть.

Законы вязкого трения. Режимы течения и структура потоков. Турбулентность. Явление

переноса. Аналогия переноса импульса, вещества и тепла. Кипение и кавитация.

Двухфазные потоки.

Кинематика. Основные понятия. Два метода описания движения. Поле скоростей.

Ускорение жидкой частицы. Классификация потоков.

Виды скоростей движения жидкой частицы. Понятие о тензоре скоростей

деформаций. Вихревое движение. Теорема Стокса.

Безвихревое течение. Потенциал скорости. Функция тока. Сетка течения.

2. Законы сохранения и основные уравнения гидрогазодинамики

Общее уравнение баланса, его физический смысл. Напряженное состояние жидкой

среды. Нормальные и касательные напряжения. Их совокупность, выражаемая тензором.

Уравнение движения в напряжениях.

Гидростатика. Основные понятия. Основной закон гидростатики. Два способа

выражения и отсчета давления.

Равновесие покоящегося газа. Термостатический напор. Понятие о силах давления.

Уравнение сохранения массы. Уравнение неразрывности.

Уравнение баланса энергии. Вектор Умова – Пойнтинга. Уравнение энергии для

струйки несжимаемой и сжимаемой жидкостей. Связь тензора напряжений с тензором

скоростей деформаций. Обобщенная гипотеза Ньютона. Уравнения Навье – Стокса.

Проблема и основные признаки турбулентности. Уравнения Рейнольдса для

турбулентного потока. Полуэмпирические теории.

Гидродинамическое подобие моделирование изотермических и неизотермических

процессов. Тепловое и диффузионное подобие. Частные законы гидродинамического

подобия. Определяющие и неопределяющие критерии. Моделирование устойчивости

струи.

3. Одномерное течение несжимаемой жидкости

Виды записи уравнения энергии. Физический смысл членов уравнения. Примеры

практического применения

Уравнение Бернулли для одномерного потока. Потери механической энергии в

гидравлических сопротивлениях Общая природа гидравлических сопротивлений.

Структура расчетных формул.

Сопротивление по длине. Основная формула равномерного потока. Ламинарное

течение в трубах. Профиль скоростей, концентрация вещества и температуры.

Турбулентное течение в трубах. Основные гипотезы современных теорий турбулентности.

Профили скоростей, концентрации и температуры. Зоны гидродинамического

сопротивления.

Местные гидравлические сопротивления. Использование уравнения сохранения

импульса для определения местных потерь напора. Сложение потерь напора. Расчет

газовых трактов промышленных печей. Влияние неизотермичности потока на

сопротивление. Расчет тяги дымовой трубы

Использование метода импульсов для определения силы воздействия потока газа

на твердые поверхности.

4. Двухфазные течения

Использование законов сохранения для двухфазных потоков. Сохранение массы

компонента. Сохранение импульса. Перенос импульса через поверхность в смесях.

Взаимодействие на границе раздела фаз. Условия совместности на границе раздела фаз

для потока массы, импульса и энергии

Условия совместности для бинарных двухфазных систем Неравновесные эффекты

на межфазных границах.

5. Неодномерные течения вязкой несжимаемой жидкости

Методы решения уравнений Навье – Стокса. Точные приближенные решения.

Внешняя задача гидродинамики. Нормальная, касательная и результирующая сила.

Основы гидравлического расчета движения и осаждение частиц в потоке. Кризис

сопротивления. Интенсификация перемешивания. Барботаж.

Пограничный слой на пластине. Ламинарный пограничный слой. Тепловой и

диффузионный слой. Интегральное соотношение для ламинарного пограничного слоя.

Устойчивость слоя. Турбулентный пограничный слой. Метод решения. Тепловой и

диффузионный турбулентный слой.

Пограничный слой на криволинейной поверхности. Отрыв пограничного слоя.

Управление течением в пограничном слое.

6. Газовые течения. Современные проблемы гидрогазодинамики

Основные термодинамические соотношения. Уравнение энергии для струйки газа.

Скорость звука. Число Маха. Дозвуковые и сверхзвуковые потоки.

Параметры торможения газа. Уравнение Гюгонио. Сопло Лаваля. Расходные,

тепловые и комбинированные сопла. Скачки уплотнения. Прямой скачок. Понятие о

косом скачке.

Истечение газа из большого резервуара. Критическое отношение давления.

Течение газа в трубах с трением. Расчет газопровода.

Управление потоком с помощью пограничной геометрии. Разделение

неизотермических потоков с помощью вихревой камеры. Интенсификация процессов

переноса на шероховатой поверхности

0 0
Отвечает Манучарян Саша.

Ответ:

Жи́дкость — вещество, находящееся в жидком агрегатном состоянии,

Текучесть

Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу, то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.

В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести: достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.

Диффузия

При нахождении в сосуде двух смешиваемых жидкостей молекулы в результате теплового движения начинают постепенно проходить через поверхность раздела, и таким образом жидкости постепенно смешиваются. Это явление называется диффузией (происходит также и в веществах, находящихся в других агрегатных состояниях).

Объяснение:

Все что я знаю,надеюсь ромог


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Течение жидких сред - это явление, которое описывает движение жидкостей под воздействием различных сил и условий. Жидкости являются одним из трех основных агрегатных состояний вещества, наряду с газами и твердыми телами. Вот некоторые ключевые аспекты течения жидких сред:

  1. Вязкость: Вязкость - это сопротивление жидкости потоку. Жидкости с высокой вязкостью сильно сопротивляются деформации и движению, в то время как жидкости с низкой вязкостью более легко двигаются. Вязкость зависит от типа жидкости и температуры.

  2. Реология: Реология - это наука, изучающая течение жидких сред. Она включает в себя изучение реологических свойств жидкостей, таких как вязкость, пластичность и упругость.

  3. Скорость и профиль потока: Течение жидкости может быть ламинарным или турбулентным. В ламинарном потоке жидкость движется в слоях, сохраняя свой порядок. В турбулентном потоке движение хаотичное и неупорядоченное. Профиль потока описывает, как скорость жидкости меняется в разных точках течения.

  4. Уравнение неразрывности: Уравнение неразрывности является одним из основных уравнений, описывающих течение жидких сред. Оно утверждает, что масса жидкости внутри замкнутой системы остается постоянной при течении.

  5. Силы, влияющие на течение: Течение жидкости может вызываться разными силами, включая гравитацию, давление, силы трения, внешние силы (например, магнитные или электрические), а также силы, связанные с изменением температуры (как конвекция).

  6. Перенос массы и тепла: Течение жидкости может также приводить к переносу массы и тепла. Это является основой для многих технологических и природных процессов, таких как конвекция в жидкостях и транспортировка веществ в биологических системах.

  7. Практические применения: Понимание течения жидкостей имеет огромное значение в инженерии и науке. Это используется в разработке систем транспортировки, охлаждения, обогрева, смешивания, фильтрации и многих других приложениях.

  8. Моделирование: Для анализа и прогнозирования течения жидкостей часто используются численные методы, такие как метод конечных элементов (МКЭ) и метод конечных объемов (МКО). Эти методы позволяют инженерам и ученым изучать и оптимизировать различные процессы, связанные с жидкостями.

Течение жидких сред является фундаментальным понятием в науке и инженерии и имеет широкий спектр практических применений в различных областях жизни и технологии.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос