
СРОЧНО! ФИЗИКА Определите высоту над Землёй, где сила тяготения уменьшилась в 3 раза? Радиус
Земли принять 6400км.Помогите пожалуйста.

Ответы на вопрос

G*m*M/(R+h)^2 = 0,8*G*m*M/R^2,
R - радиус Земли
h - высота на Землей
G - гравитационная постоянная
m и M - массы тела и Земли.
Преобразуем и получим:
(1 + h/R) = 1,25^0,5. h = 755 км.



Calculation of the Height above the Earth where the Gravitational Force is Reduced by 3 Times
To determine the height above the Earth where the gravitational force is reduced by 3 times, we can use the formula for gravitational force:
F = G * (m1 * m2) / r^2
Where: - F is the gravitational force between two objects, - G is the gravitational constant (approximately 6.67430 × 10^-11 N(m/kg)^2), - m1 and m2 are the masses of the two objects, and - r is the distance between the centers of the two objects.
In this case, we want to find the height above the Earth where the gravitational force is reduced by 3 times. Let's assume that the initial distance from the center of the Earth is r1, and the reduced distance is r2.
We can set up the equation as follows:
F1 = G * (m1 * m2) / r1^2
F2 = G * (m1 * m2) / r2^2
Since we want to find the height where the gravitational force is reduced by 3 times, we can write:
F2 = 1/3 * F1
Substituting the equations for F1 and F2, we get:
G * (m1 * m2) / r2^2 = 1/3 * G * (m1 * m2) / r1^2
Simplifying the equation, we can cancel out the masses (m1 and m2):
(1 / r2^2) = (1/3) * (1 / r1^2)
Now, we can substitute the given radius of the Earth (r1 = 6400 km) and solve for r2:
(1 / r2^2) = (1/3) * (1 / (6400 km)^2)
Converting the radius of the Earth to meters (1 km = 1000 m), we have:
(1 / r2^2) = (1/3) * (1 / (6400 km * 1000 m/km)^2)
Simplifying further:
(1 / r2^2) = (1/3) * (1 / (6400 * 1000)^2 m^2)
Now, we can solve for r2 by taking the square root of both sides:
r2 = sqrt((3 * (6400 * 1000)^2 m^2))
Evaluating this expression, we can find the height above the Earth where the gravitational force is reduced by 3 times.
Let's calculate it:
r2 = sqrt((3 * (6400 * 1000)^2 m^2))
r2 = sqrt((3 * (6400 * 1000)^2))
r2 = sqrt((3 * 40960000000))
r2 ≈ 2.828 * 10^6 meters
Therefore, the height above the Earth where the gravitational force is reduced by 3 times is approximately 2.828 * 10^6 meters.
Please note that this calculation assumes a simplified model of the Earth as a uniform sphere and does not take into account other factors that may affect the gravitational force at different heights.


Похожие вопросы
Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili