
Вопрос задан 08.09.2020 в 11:56.
Предмет Математика.
Спрашивает Смирнов Евгений.
Знайдіть площу прямокутного трикутника, катети якого відносяться як3:4, а гіпотинуза = 25см.
Розпишите.

Ответы на вопрос

Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Площа прямокутного трикутника може бути знайдена за формулою S = (a * b) / 2, де a і b - довжини катетів.
У даному випадку, ми знаємо, що відношення катетів дорівнює 3:4. Таким чином, a = 3x і b = 4x, де x - спільний множник.
Також, ми знаємо, що гіпотенуза дорівнює 25 см.
Застосовуючи теорему Піфагора, ми можемо записати наступне:
(3x)² + (4x)² = 25² 9x² + 16x² = 625 25x² = 625
Розділимо обидві частини рівняння на 25:
x² = 25 x = √25 x = 5
Тепер, ми можемо знайти довжини катетів:
a = 3x = 3 * 5 = 15 b = 4x = 4 * 5 = 20
І, нарешті, ми можемо обчислити площу:
S = (a * b) / 2 = (15 * 20) / 2 = 300 / 2 = 150 кв. см
Таким чином, площа прямокутного трикутника дорівнює 150 квадратних сантиметрів.


Топ вопросов за вчера в категории Математика

Математика 12

Математика 61

Математика 772

Математика 65

Математика 23
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili