Вопрос задан 08.09.2020 в 01:23. Предмет Математика. Спрашивает Попов Дима.

Решите неравенство. 5(u+2)+14<6-u;4(u+3)<3(u+2);3/5 (5u-2/3)<u+7,6.срочно на сегодня надо

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Solving the Inequalities

Let's solve the given inequalities step by step:

1. 5(u + 2) + 14 < 6 - u

To solve this inequality, we will simplify the expression and isolate the variable u.

Expanding the left side of the inequality: 5u + 10 + 14 < 6 - u

Combining like terms: 5u + 24 < 6 - u

Adding u to both sides: 5u + u + 24 < 6

Combining like terms: 6u + 24 < 6

Subtracting 24 from both sides: 6u < -18

Dividing both sides by 6: u < -3

Therefore, the solution to the first inequality is u < -3.

2. 4(u + 3) < 3(u + 2)

To solve this inequality, we will simplify the expression and isolate the variable u.

Expanding the left side of the inequality: 4u + 12 < 3u + 6

Subtracting 3u from both sides: 4u - 3u + 12 < 6

Combining like terms: u + 12 < 6

Subtracting 12 from both sides: u < -6

Therefore, the solution to the second inequality is u < -6.

3. 3/5 + (5u - 2/3) < u + 7

To solve this inequality, we will simplify the expression and isolate the variable u.

Combining the fractions on the left side: 3/5 + (15u/3 - 2/3) < u + 7

Combining the numerators of the fractions: 3/5 + (15u - 2)/3 < u + 7

To simplify further, we will find a common denominator for the fractions: Multiplying the first fraction by 3/3 and the second fraction by 5/5: (9/15) + (5(15u - 2)/15) < (3u + 21)/3

Combining the fractions: (9 + 5(15u - 2))/15 < (3u + 21)/3

Multiplying both sides by 15 to eliminate the denominators: 9 + 5(15u - 2) < 5(3u + 21)

Expanding and simplifying: 9 + 75u - 10 < 15u + 105

Combining like terms: 75u - 15u < 105 - 9 + 10

Simplifying further: 60u < 106

Dividing both sides by 60: u < 106/60

Simplifying the fraction: u < 53/30

Therefore, the solution to the third inequality is u < 53/30.

4. Summary of Solutions:

The solutions to the given inequalities are as follows: - u < -3 - u < -6 - u < 53/30

Please note that these solutions are based on the given inequalities and the steps taken to solve them.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос