
Вопрос задан 25.06.2020 в 22:23.
Предмет Математика.
Спрашивает Красильникова Валентина.
F(x)= x^2 + bx (b больше нуля) начертите фигуру, ограниченную осью х и линией f(x). В фигуру
вписан прямоугольный треугольник, у которого одна вершина лежит в начале координат, один из катетов на оси х, а противоположная ему вершина - на линии f(x). найдите максимальную площадь этого треугольника. Задача вроде решается, а только х в итоге может расти бесконечно( то есть максимальная площадь не имеет конца). Предложите, пожалуйста, ваш вариант решения. p.s. желательно без использования второй производной, а через луч. Так нагляднее. Заранее спасибо!

Ответы на вопрос

Отвечает Ларин Рауль.
РЕШЕНИЕ на рисунке в приложении.
Разложили функцию на множители
Y = x*(x+b)
Корни функции - точки пересечения с осью Х
х = 0, х = - b
Вершина параболы по середине между корнями.
Строим прямоугольный треугольник к вершине параболы и именно он будет иметь максимальную площадь.
ОТВЕТ Smax = b³/16
Разложили функцию на множители
Y = x*(x+b)
Корни функции - точки пересечения с осью Х
х = 0, х = - b
Вершина параболы по середине между корнями.
Строим прямоугольный треугольник к вершине параболы и именно он будет иметь максимальную площадь.
ОТВЕТ Smax = b³/16



Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili