
Если диагонали прямоугольника являются биссектрисами углов, можно ли без доказательства утверждать,
что данный прямоугольник - квадрат?

Ответы на вопрос

Введем определение прямоугольника.
Определение. Прямоугольником называют параллелограмм, у которого все углы прямые (см. Рис. 1).
Рис. 1. Прямоугольник
Замечание. Очевидным эквивалентным определением прямоугольника (иногда его именуют признаком прямоугольника) можно назвать следующее. Прямоугольник – это параллелограмм с одним углом . Это утверждение практически очевидно, и мы оставим его без доказательства, пользуясь далее как определением.
Т.к. прямоугольник, как это видно из определения, является частным случаем параллелограмма, то ему присущи все ранее описанные свойства параллелограмма, однако у него имеются и свои специфические свойства, которые мы сейчас рассмотрим.
Теорема 1. Свойство прямоугольника. Диагонали прямоугольника равны.
Доказательство. Изобразим на Рис. 2 прямоугольник (как и у параллелограмма, противоположные стороны равны и параллельны). Все углы прямые. Необходимо доказать, что диагонали .



Да , т.к диагонали пересекаются под прямым угол , и точка пересечения делит на 2е равные части , а как мы знаем , что в прямоугольнике и квадрате дтагональ явл.бис-сой и медианой и равняется 90`


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili