Вопрос задан 10.05.2020 в 14:57. Предмет Математика. Спрашивает Олішевський Саша.

Найдите точку максимума в функции y=(13-X)e^x+13. Помогите срочно пожалуйста!!!!

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мамаев Максим.
y=(13-x)e^x+13
y'=(13-x)'e^x+(13-x)(e^x)'=-e^x+(13-x)e^x=e^x(-1+13-x)
=e^x(12-x).
y'=0 =\ \textgreater \  e^x(12-x)=0 =\ \textgreater \ x=12 - точка экстремума, т.к. e^x\ \textgreater \ 0. Определяем знаки производной:
 +           -
-------.------>    Значит, функция возрастает на (-∞;12) и убывает на (12;+∞).
       12            Поэтому 12 - точка максимума функции.
0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос