
Вопрос задан 10.04.2020 в 05:31.
Предмет Математика.
Спрашивает Фёдорова Александра.
Пожалуйста, помогите решить задачу! "Папа решил облицевать три стены ванной комнаты плиткой
квадратной формы так, чтобы её не разрезать. Все стены комнаты имеют форму прямоугольника и размеры: 240 см и 140 см; 240 см и 220 см; 240 см и 140 см. Каким может быть наибольший возможный размер одной плитки? Сколько таких плиток нужно для облицовки ванной комнаты?"

Ответы на вопрос

Отвечает Мулина Аня.
Пусть сторона квадратной плитки x. Число плиток, покрывающее сторону длиной 240 см. равно n, покрывающее сторону длиной 220 см. k и 140 см. - l. Тогда x=240/n=220/k=140/l. Отсюда 240k=220n или 12k=11n, значит минимальные значения будут n=12, k=11. Отсюда 220/11=140/l и 220l=140*11, значит l=7. Получаем максимальный размер стороны плитки x=240/12=20. Общая площадь стен равна S=240*140*2 + 240*220. Площадь плитки x^2=400. Необходимое количество плиток равно S/x^2= 120000/400=300 плиток.
Ответ: Наибольший размер одной плитки 20 на 20 см. Всего нужно 300 плиток.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili