
Вопрос задан 30.03.2020 в 01:46.
Предмет Математика.
Спрашивает Ахтямова Айлина.
Рассмотрим такую задачу: какое наибольшее число ферзей можно поставить на доску 8×8 так, чтобы
никакие 2 ферзя не били друг друга? Рассуждение 1. Разобьём доску на 15 диагоналей, «идущих в одном направлении» (включая диагонали, состоящие из одной клетки). На каждой из них стоит не больше одного ферзя, поэтому всего ферзей не больше 15. Рассуждение 2. Разобьём доску на 8 вертикалей. В каждой вертикали стоит не больше одного ферзя, поэтому всего ферзей не больше 8. Рассуждение 3. Разобьём доску на 8 вертикалей. В каждой вертикали стоит не больше одного ферзя, поэтому ответ в задаче — 8 ферзей. Рассуждение 4. Разобьём доску на 8 вертикалей. В каждой вертикали стоит не больше одного ферзя. Разобьём доску на 8 горизонталей. В каждой горизонтали стоит не больше одного ферзя. Поэтому на доску можно поставить 8 ферзей. ВАРИАНТОВ ОТВЕТА МОЖЕТ БЫТЬ НЕСКОЛЬКО!

Ответы на вопрос

Отвечает Сапожников Саша.
Так как ферзь - фигура, активная по горизонтали, вертикали и диагонали, то максимальное количество ферзей на доске 8х8 клеток, при условии, что ни одна фигура не находится под боем, - 8.
Одно из решений показано на рисунке.
Одно из решений показано на рисунке.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili