
Моторная лодка, обладающая скоростью движения20 км/ч, прошла расстояние между двумя пунктами по
реке туда и обратно не останавливаясь, за 6 ч 15 мин. Определить скорость течения реки, если расстояние между пунктами равно60 км.

Ответы на вопрос

20+х км/час=скорость по течению
20-х км/час =скорость против течения
6 час 15 мин=6 ц 15\60=6,25 время
60/(20+х) + 60/(20-х) = 6.25
1200-60х+1200+60х=6,25*(20²-х²)
2400=6,25*(400-х²)
2400=2500-6,25х²
6,25х²=100
х²=16
х=4
ответ 4 км/час скорость течения реки



Problem Analysis
We are given the following information: - The motorboat travels at a speed of 20 km/h. - The motorboat travels a distance of 60 km between two points on the river, both ways, without stopping. - The total time taken for the round trip is 6 hours and 15 minutes, which is equivalent to 6.25 hours.
We need to determine the speed of the river's current.
Solution
Let's assume the speed of the river's current is x km/h.
When the motorboat is traveling downstream (with the current), its effective speed is increased by the speed of the current. Therefore, the speed of the motorboat downstream is 20 + x km/h.
When the motorboat is traveling upstream (against the current), its effective speed is decreased by the speed of the current. Therefore, the speed of the motorboat upstream is 20 - x km/h.
We can use the formula distance = speed × time to calculate the time taken for each leg of the journey.
The time taken to travel downstream is given by: time_downstream = distance / (20 + x)
The time taken to travel upstream is given by: time_upstream = distance / (20 - x)
Since the total time taken for the round trip is 6.25 hours, we can write the equation: time_downstream + time_upstream = 6.25
Substituting the values, we get: distance / (20 + x) + distance / (20 - x) = 6.25
We know that the distance between the two points is 60 km, so we can substitute that value as well: 60 / (20 + x) + 60 / (20 - x) = 6.25
Now, we can solve this equation to find the value of x, which represents the speed of the river's current.
Calculation
Let's solve the equation 60 / (20 + x) + 60 / (20 - x) = 6.25 to find the value of x.
Using the search results, we can see that there are no relevant snippets that provide a direct solution to this equation. Therefore, we need to solve it algebraically.
To solve the equation, we can multiply both sides by the common denominator, which is (20 + x)(20 - x).
After simplifying the equation, we get: 60(20 - x) + 60(20 + x) = 6.25(20 + x)(20 - x)
Expanding and simplifying further, we get: 1200 - 60x + 1200 + 60x = 6.25(400 - x^2)
Simplifying the equation, we get: 2400 = 2500 - 6.25x^2
Rearranging the equation, we get: 6.25x^2 = 100
Dividing both sides by 6.25, we get: x^2 = 16
Taking the square root of both sides, we get: x = ±4
Since the speed of the river's current cannot be negative, we can conclude that the speed of the river's current is 4 km/h.
Answer
Therefore, the speed of the river's current is 4 km/h.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili