Вопрос задан 16.01.2020 в 02:55. Предмет Математика. Спрашивает Черных Ангелина.

Решить уравнения..​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Дымский Саша.

Ответ:

Пошаговое объяснение:

вот и все

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Solving Equations

To solve equations, there are various methods and techniques depending on the type of equation. Here are a few examples:

1. Solving Linear Equations: Linear equations are equations of the form `ax + b = c`, where `a`, `b`, and `c` are constants and `x` is the variable. To solve linear equations, you can use techniques like isolating the variable or using the properties of equality. For example, to solve the equation `3.5x + x = 180`, you can combine like terms and isolate the variable `x`:

``` 3.5x + x = 180 4.5x = 180 x = 180 / 4.5 x = 40 ```

Therefore, the solution to the equation `3.5x + x = 180` is `x = 40`.

2. Solving Quadratic Equations: Quadratic equations are equations of the form `ax^2 + bx + c = 0`, where `a`, `b`, and `c` are constants and `x` is the variable. There are different methods to solve quadratic equations, such as factoring, completing the square, or using the quadratic formula. For example, to solve the equation `x^2 - 4x - 5 = 0`, you can use the quadratic formula:

``` x = (-b ± √(b^2 - 4ac)) / (2a) ```

Plugging in the values `a = 1`, `b = -4`, and `c = -5`, we get:

``` x = (-(-4) ± √((-4)^2 - 4(1)(-5))) / (2(1)) x = (4 ± √(16 + 20)) / 2 x = (4 ± √36) / 2 x = (4 ± 6) / 2 ```

This gives us two solutions: `x = (4 + 6) / 2 = 5` and `x = (4 - 6) / 2 = -1`.

3. Solving Exponential Equations: Exponential equations involve variables in the exponent. To solve exponential equations, you can use logarithms. For example, to solve the equation `log_5(x + 121) = 4`, you can rewrite it as:

``` x + 121 = 5^4 x + 121 = 625 x = 625 - 121 x = 504 ```

Therefore, the solution to the equation `log_5(x + 121) = 4` is `x = 504`.

These are just a few examples of solving equations. There are many other types of equations and methods to solve them. If you have a specific equation you would like help with, please provide the equation, and I'll be happy to assist you further.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос