
(a+b)(a+2)(b+2)>=16ab Докажите неравенство. Подробно пожалуйста


Ответы на вопрос

(5+2)(10+2)(5+10)>=16*5*10
1260>=800



To prove the inequality (a+b)(a+2)(b+2) >= 16ab, we can expand both sides of the inequality and simplify the expression.
Expanding the left side of the inequality: (a+b)(a+2)(b+2) = (a^2 + 2a + ab + 2b)(b+2) = a^2b + 2ab + ab^2 + 2a^2 + 4a + 2b + 4ab + 8 = a^2b + 6ab + ab^2 + 2a^2 + 4a + 2b + 8
Now, let's expand the right side of the inequality: 16ab
Comparing the expanded expressions, we have: a^2b + 6ab + ab^2 + 2a^2 + 4a + 2b + 8 >= 16ab
To prove the inequality, we need to show that the left side is greater than or equal to the right side for all possible values of a and b.
Let's simplify the expression further: a^2b + 6ab + ab^2 + 2a^2 + 4a + 2b + 8 - 16ab >= 0 a^2b + ab^2 + 2a^2 - 10ab + 4a + 2b + 8 >= 0
Now, let's factor out common terms: ab(a + b) + 2a(a - 5b) + 2(b + 4) >= 0
To prove the inequality, we need to show that the left side is greater than or equal to zero for all possible values of a and b.
Since the inequality involves multiple variables, we can't directly prove it by substituting values. Instead, we can analyze different cases to determine when the inequality holds true.
Case 1: a + b > 0 If a + b > 0, then ab(a + b) >= 0. So, we need to prove that 2a(a - 5b) + 2(b + 4) >= 0.
Case 1.1: a - 5b >= 0 If a - 5b >= 0, then 2a(a - 5b) >= 0. So, we need to prove that 2(b + 4) >= 0.
Case 1.1.1: b + 4 >= 0 If b + 4 >= 0, then 2(b + 4) >= 0. Therefore, the inequality holds true for this case.
Case 1.1.2: b + 4 < 0 If b + 4 < 0, then 2(b + 4) < 0. Therefore, the inequality does not hold true for this case.
Case 1.2: a - 5b < 0 If a - 5b < 0, then 2a(a - 5b) < 0. Therefore, the inequality does not hold true for this case.
Case 2: a + b < 0 If a + b < 0, then ab(a + b) <= 0. So, we need to prove that 2a(a - 5b) + 2(b + 4) >= 0.
Case 2.1: a - 5b >= 0 If a - 5b >= 0, then 2a(a - 5b) >= 0. So, we need to prove that 2(b + 4) >= 0.
Case 2.1.1: b + 4 >= 0 If b + 4 >= 0, then 2(b + 4) >= 0. Therefore, the inequality holds true for this case.
Case 2.1.2: b + 4 < 0 If b + 4 < 0, then 2(b + 4) < 0. Therefore, the inequality does not hold true for this case.
Case 2.2: a - 5b < 0 If a - 5b < 0, then 2a(a - 5b) < 0. Therefore, the inequality does not hold true for this case.
Based on the analysis of different cases, we can conclude that the inequality (a+b)(a+2)(b+2) >= 16ab does not hold true for all possible values of a and b.
Please note that this is a proof by case analysis, and it demonstrates that the inequality does not hold true for all possible values of a and b.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili