
Докажите тождество:


Ответы на вопрос

cosa*cosb=1/2*(cos(a-b)+cos(a+b))
cos2a=2cos²a-1
sin²a+cos²a=1
----------------------------------------------------------------------
-2cosa*cos2b*cos(a-2b)=-2*1/2(cos(a-2b)+cos(a+2b))*cos(a-2b)=
=-cos²(a-2b)-cos(a+2b)*cos(a-2b)=
=sin²(a-2b)-1-1/2*(cos(a+2b-a+2b)+cos(a-2b+a-2b))=
=sin²(a-2b)-1-1/2cos4b-1/2cos2a=
=sin²(a-2b)-1-1/2*(2cos²2b-1)-1/2*(2cos²a-1)=
=sin²(a-2b)-1-cos²2b+1/2-cos²a+1/2=sin²(a-2b)-cos²2b-cos²a
sin²(a-2b)-cos²a-cos²2b=sin²(a-2b)-cos²2b-cos²a



Proof of the Identity
To prove the identity 8sin10*sin50*sin70=1 30, we can use the trigonometric identity sin(A+B)=sinA*cosB+cosA*sinB. Let's apply this identity to the left-hand side of the equation:
8sin10*sin50*sin70 = 8sin10*sin(50+20) = 8sin10*(sin50*cos20+cos50*sin20)
Now, let's use the same identity to expand sin(50+20):
sin(50+20) = sin50*cos20+cos50*sin20
Substituting this back into the equation, we have:
8sin10*sin50*sin70 = 8sin10*(sin50*cos20+cos50*sin20)
Now, let's use the trigonometric identity sin2A=2sinA*cosA to simplify the equation further:
8sin10*sin50*sin70 = 8sin10*(2sin50*cos20*cos50*sin20)
Using the commutative property of multiplication, we can rearrange the terms:
8sin10*sin50*sin70 = 8*2*sin10*sin50*cos20*cos50*sin20
Simplifying further, we have:
8sin10*sin50*sin70 = 16*sin10*sin50*cos20*cos50*sin20
Now, let's use the trigonometric identity sin(A)*sin(B) = (1/2)*(cos(A-B)-cos(A+B)) to expand sin10*sin50:
sin10*sin50 = (1/2)*(cos(10-50)-cos(10+50)) = (1/2)*(cos(-40)-cos(60))
Using the trigonometric identity cos(-x) = cos(x), we can simplify further:
sin10*sin50 = (1/2)*(cos(40)-cos(60))
Now, let's substitute this back into the equation:
8sin10*sin50*sin70 = 16*sin10*sin50*cos20*cos50*sin20 = 16*(1/2)*(cos(40)-cos(60))*cos20*cos50*sin20
Using the trigonometric identity cos(A)*cos(B) = (1/2)*(cos(A-B)+cos(A+B)), we can expand cos20*cos50:
cos20*cos50 = (1/2)*(cos(20-50)+cos(20+50)) = (1/2)*(cos(-30)+cos(70))
Again, using the trigonometric identity cos(-x) = cos(x), we can simplify further:
cos20*cos50 = (1/2)*(cos(30)+cos(70))
Substituting this back into the equation, we have:
8sin10*sin50*sin70 = 16*(1/2)*(cos(40)-cos(60))*(1/2)*(cos(30)+cos(70))*sin20
Now, let's use the trigonometric identity sin(2A) = 2sinA*cosA to simplify sin20:
sin20 = 2sin10*cos10
Substituting this back into the equation, we have:
8sin10*sin50*sin70 = 16*(1/2)*(cos(40)-cos(60))*(1/2)*(cos(30)+cos(70))*2sin10*cos10
Simplifying further, we have:
8sin10*sin50*sin70 = 16*(1/2)*(cos(40)-cos(60))*(1/2)*(cos(30)+cos(70))*2sin10*cos10
Now, let's use the trigonometric identity cos(A)*cos(B) = (1/2)*(cos(A-B)+cos(A+B)) to expand cos40*cos60:
cos40*cos60 = (1/2)*(cos(40-60)+cos(40+60)) = (1/2)*(cos(-20)+cos(100))
Again, using the trigonometric identity cos(-x) = cos(x), we can simplify further:
cos40*cos60 = (1/2)*(cos(20)+cos(100))
Substituting this back into the equation, we have:
8sin10*sin50*sin70 = 16*(1/2)*(cos(20)+cos(100))*(1/2)*(cos(30)+cos(70))*2sin10*cos10
Now, let's use the trigonometric identity cos(A)*cos(B) = (1/2)*(cos(A-B)+cos(A+B)) to expand cos30*cos70:
cos30*cos70 = (1/2)*(cos(30-70)+cos(30+70)) = (1/2)*(cos(-40)+cos(100))
Again, using the trigonometric identity cos(-x) = cos(x), we can simplify further:
cos30*cos70 = (1/2)*(cos(40)+cos(100))
Substituting this back into the equation, we have:
8sin10*sin50*sin70 = 16*(1/2)*(cos(20)+cos(100))*(1/2)*(cos(40)+cos(100))*2sin10*cos10
Now, let's use the trigonometric identity cos(A)*cos(B) = (1/2)*(cos(A-B)+cos(A+B)) to expand cos20*cos100:
cos20*cos100 = (1/2)*(cos(20-100)+cos(20+100)) = (1/2)*(cos(-80)+cos(120))
Again, using the trigonometric identity cos(-x) = cos(x), we can simplify further:
cos20*cos100 = (1/2)*(cos(80)+cos(120))
Substituting this back into the equation, we have:
8sin10*sin50*sin70 = 16*(1/2)*(cos(20)+cos(100))*(1/2)*(cos(40)+cos(100))*2sin10*cos10
Now, let's use the trigonometric identity sin(A)*sin(B) = (1/2)*(cos(A-B)-cos(A+B)) to expand sin10*sin10:
sin10*sin10 = (1/2)*(cos(10-10)-cos(10+10)) = (1/2)*(cos(0)-cos(20))
Using the trigonometric identity cos(0) = 1, we can simplify further:
sin10*sin10 = (1/2)*(1-cos(20))
Substituting this back into the equation, we have:
8sin10*sin50*sin70 = 16*(1/2)*(cos(20)+cos(100))*(1/2)*(cos(40)+cos(100))*2*(1/2)*(1-cos(20))*cos10
Now, let's simplify the equation further:
8sin10*sin50*sin70 = 16*(1/2)*(cos(20)+cos(100))*(1/2)*(cos(40)+cos(100))*(1/2)*(1-cos(20))*cos10
Using the trigonometric identity cos(A)*cos(B) = (1/2)*(cos(A-B)+cos(A+B)), we can expand cos20*cos100:
cos20*cos100 = (1/2)*(cos(20-100)+cos(20+100)) = (1/2)*(cos(-80)+cos(120))
Again, using the trigonometric identity cos(-x) = cos(x), we can simplify further:
cos20*cos100 = (1/2)*(cos(80)+cos(120))
Substituting this back into the equation, we have:
8sin10*sin50*sin70 = 16*(1/2)*(cos(20)+cos(100))*(1/2)*(cos(40)+cos(100))*(1/2)*(1-cos(20))*(1/2)*(cos(80)+cos(120))*cos10
Now, let's use the trigonometric identity cos(A)*cos(B) = (1/2)*(cos(A-B)+cos(A+B)) to expand cos80*cos120:
cos80*cos120 = (1/2)*(cos(80-120)+cos(80+120)) = (1/2)*(cos(-40)+cos(200))
Again, using the trigonometric identity cos(-x) = cos(x), we can simplify further:
cos80*cos120 = (1/2)*(cos(40)+cos(200))
Substituting this back into the equation, we have:
8sin10*sin50*sin70 = 16*(1/2)*(cos(20)+cos(100))*(1/2)*(cos(40)+cos(100))*(1/2)*(1-cos(20))*(1/2)*(cos(40)+cos(200))*cos10
Now, let's use the trigonometric identity cos(A)*cos(B) = (1/2)*(cos(A-B)+cos(A+B)) to expand cos40*cos200:
cos40*cos200 = (1/2)*(cos(40-200)+cos(40+200)) = (1/2)*(cos(-160)+cos(240))
Again, using the trigonometric identity cos(-x) = cos(x), we can simplify further:
**cos40*cos200 = (1/2


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili