
Вопрос задан 19.05.2018 в 01:12.
Предмет Математика.
Спрашивает Пуримов Дима.
В задание исследовать данные функции методами дифференциального исчисления и построить их графику.
Исследование функции рекомендуется проводить по следующей схеме: 1) Найти область определения функции; 2) Исследовать функцию на непрерывность; 3) Определить, является ли данная функция четной, нечетной; 4) Найти интервалы возрастания и убывания функции и точки ее экстремума; 5) Найти интервалы выпуклости и вогнутости и точки перегиба графика функции; 6) Найти асимптоты графика функции. y=2e⁻ˣ²

Ответы на вопрос

Отвечает Алборов Александр.
График функции в приложении.
ДАНО
ИССЛЕДОВАНИЕ
1. Область определения - x∈(-∞;+∞) - непрерывная, разрывов нет.
2.Пересечение с осью Х - х ∈∅ - нет
3. Пересечение с осью У - у(0) =2 при х = 0.
4. Поведение на бесконечности.
lim Y(-∞)=0
lim Y(+∞)=0.
5. Наклонная асимптота - У =0.
6. Проверка на четность.
Y(-x) = Y(x) - функция четная - симметричная относительно оси У.
7. Производная функции
8. Точка экстремума
х = 0.
Значение максимума - Y(0)=2.
9. Возрастает - Х∈(-∞;0)
Убывает - Х∈(0;+∞)
10. Вторая производная



Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili