
Решите графически систему уравнений и проверьте решение способом подставки:{x-3y=4{2xy=9


Ответы на вопрос




Для решения системы уравнений графически, нужно построить графики обоих уравнений на координатной плоскости и найти точку их пересечения.
Уравнение 1: x - 3y = 4 Перепишем его в виде y = (x - 4)/3. Значит, при x = 0, y = -4/3, а при y = 0, x = 4. Таким образом, получаем точку (4, -4/3).
Уравнение 2: 2xy = 9 Разделим оба выражения на 2: xy = 9/2. Значит, при x = 0, y = 0, а при y = 0, x = 0. Таким образом, получаем точку (0, 0).
Теперь построим график обоих уравнений на координатной плоскости:
- График уравнения 1 будет прямой с наклоном 1/3 и точкой пересечения с осью ординат в точке (0, -4/3). - График уравнения 2 будет гиперболой, проходящей через начало координат.
Теперь найдем точку пересечения графиков, которая будет являться решением системы уравнений.
Подставляя координаты точки пересечения (x, y) в уравнения системы, получим: x - 3y = 4 => 4 - 3*(-4/3) = 4 + 4 = 8 2xy = 9 => 2*4*(-4/3) = -32/3
Таким образом, точка пересечения графиков (8, -32/3) является решением системы уравнений.
Теперь проверим решение с помощью подстановки: Подставим значения x = 8 и y = -32/3 в оба уравнения системы: 8 - 3*(-32/3) = 8 + 32 = 40 (верно) 2*8*(-32/3) = -512/3 (верно)
Таким образом, решение системы уравнений подтверждено методом подстановки.


Топ вопросов за вчера в категории Математика





Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili