
Решите систему уравнений: 4х+у=30 3х+у=28


Ответы на вопрос




Для решения данной системы уравнений, мы можем использовать метод сравнения или метод подстановки. Давайте решим её с помощью метода сравнения.
1) Система уравнений: 4х + у = 30 ...(уравнение 1) 3х + у = 28 ...(уравнение 2)
2) Метод сравнения: Умножим уравнение 2 на -1, чтобы избавиться от у в обоих уравнениях: -1(3х + у) = -1(28) -3х - у = -28 ...(уравнение 3)
3) Сложим уравнение 1 и уравнение 3: (4х + у) + (-3х - у) = 30 + (-28) 4х - 3х + у - у = 2 х = 2
4) Подставим значение х в уравнение 1 или 2: Подставим х = 2 в уравнение 1: 4(2) + у = 30 8 + у = 30 у = 30 - 8 у = 22
5) Получили значения х = 2 и у = 22. Проверим, подставив их в исходные уравнения: Подставим х = 2 и у = 22 в уравнение 1: 4(2) + 22 = 30 8 + 22 = 30 30 = 30
Подставим х = 2 и у = 22 в уравнение 2: 3(2) + 22 = 28 6 + 22 = 28 28 = 28
Оба уравнения выполняются при значениях х = 2 и у = 22, поэтому наше решение верно.
Таким образом, система уравнений имеет решение х = 2 и у = 22.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili