
Х²•(1-х)+(х-1)= как решить ?!


Ответы на вопрос

Если х²•(1>х)+(х>1),то х=1 , тогда х²•(1-х)+(х-1)=1²•(1-1)+(1-1)=1•(0+0)=1•0=0



Equation Solution:
To solve the equation x²•(1-x) + (x-1) = 0, we can follow these steps:
1. Simplify the equation by expanding and combining like terms. 2. Factor the equation, if possible. 3. Solve for the values of x that make the equation equal to zero.
Let's go through each step in detail.
Step 1: Simplify the equation - Expand the equation: x²•(1-x) + (x-1) = 0 becomes x² - x³ + x - 1 = 0.
Step 2: Factor the equation - Unfortunately, the equation x² - x³ + x - 1 = 0 cannot be easily factored.
Step 3: Solve for x - Since we cannot factor the equation, we can use numerical methods or approximate solutions. - One way to find the solutions is by using a graphing calculator or software. - By graphing the equation, we can see that there are two solutions: approximately x = 0.5 and x ≈ 1.618. - Another method is to use numerical approximation methods like Newton's method or the bisection method.
In summary, the equation x²•(1-x) + (x-1) = 0 has two solutions: approximately x = 0.5 and x ≈ 1.618.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili