
в коробке находится 4 красных и 6 зеленых карандашей. Из нее случайно выпали 3 карандаша. Какова
вероятность того, что 2 из них красные?

Ответы на вопрос







Problem Analysis
In the given problem, there are 4 red and 6 green pencils in a box. Three pencils are randomly selected from the box. We need to find the probability that 2 of the selected pencils are red.Solution
To find the probability, we need to calculate the total number of possible outcomes and the number of favorable outcomes.Total Number of Possible Outcomes: The total number of possible outcomes is the number of ways to select 3 pencils from a total of 10 pencils. This can be calculated using the combination formula:
``` nCr = n! / (r! * (n-r)!) ```
where n is the total number of items and r is the number of items to be selected.
In this case, n = 10 (total number of pencils) and r = 3 (number of pencils to be selected).
``` Total number of possible outcomes = 10C3 = 10! / (3! * (10-3)!) ```
Number of Favorable Outcomes: The number of favorable outcomes is the number of ways to select 2 red pencils from the 4 available red pencils and 1 pencil from the 6 available green pencils. This can also be calculated using the combination formula:
``` Number of favorable outcomes = (number of ways to select 2 red pencils) * (number of ways to select 1 green pencil) ```
``` Number of ways to select 2 red pencils = 4C2 = 4! / (2! * (4-2)!) Number of ways to select 1 green pencil = 6C1 = 6! / (1! * (6-1)!) ```
Calculating the Probability: The probability of an event is given by the formula:
``` Probability = Number of favorable outcomes / Total number of possible outcomes ```
Now, let's calculate the probability.
Calculation
Total number of possible outcomes: ``` Total number of possible outcomes = 10C3 = 10! / (3! * (10-3)!) = 10! / (3! * 7!) = (10 * 9 * 8) / (3 * 2 * 1) = 120 ```Number of favorable outcomes: ``` Number of ways to select 2 red pencils = 4C2 = 4! / (2! * (4-2)!) = 4! / (2! * 2!) = (4 * 3) / (2 * 1) = 6
Number of ways to select 1 green pencil = 6C1 = 6! / (1! * (6-1)!) = 6! / (1! * 5!) = 6
Number of favorable outcomes = (number of ways to select 2 red pencils) * (number of ways to select 1 green pencil) = 6 * 6 = 36 ```
Probability: ``` Probability = Number of favorable outcomes / Total number of possible outcomes = 36 / 120 = 0.3 ```
Answer
The probability that 2 of the randomly selected pencils are red is 0.3.Verification
Let's verify the answer using a Python simulation.```python import random
red_pencils = 4 green_pencils = 6 total_pencils = red_pencils + green_pencils
num_simulations = 1000000 num_favorable_outcomes = 0
for _ in range(num_simulations): selected_pencils = random.sample(range(total_pencils), 3) num_red_pencils = sum(1 for pencil in selected_pencils if pencil < red_pencils) if num_red_pencils == 2: num_favorable_outcomes += 1
probability = num_favorable_outcomes / num_simulations print("Simulated Probability:", probability) ```
Running the simulation multiple times, we get results close to the calculated probability of 0.3, which verifies our answer.
Conclusion
The probability that 2 of the randomly selected pencils are red is 0.3.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili